Angiotensin-Converting Enzyme Expression in Human Carotid Artery Atherosclerosis
ABSTRACTAngiotensin-converting enzyme (ACE) inhibitors reduce the progression of atherosclerosis in animal models and reinfarction rates after myocardial infarction in humans. Although expression of components of the renin-angiotensin system has been reported in human coronary arteries, no data rega...
Gespeichert in:
Veröffentlicht in: | Hypertension (Dallas, Tex. 1979) Tex. 1979), 2000-01, Vol.35 (1, Part 2 Suppl), p.353-353 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACTAngiotensin-converting enzyme (ACE) inhibitors reduce the progression of atherosclerosis in animal models and reinfarction rates after myocardial infarction in humans. Although expression of components of the renin-angiotensin system has been reported in human coronary arteries, no data regarding their presence in carotid arteries, a frequent site for the occurrence of atherosclerosis plaques, are available. The following study sought to determine whether ACE mRNA and protein can be detected in human carotid atheromatous lesions. Twenty-four intact endarterectomy specimens were obtained from patients with severe carotid occlusive disease (17 males and 7 females, aged 68±1 years) and fixed within 30 minutes. Carotid artery specimens contained advanced Stary type V and VI lesions, and human ACE mRNA expression and protein were localized in cross sections by the combination of in situ hybridization and immunohistochemistry. Cell type–specific antibodies were used to colocalize ACE to smooth muscle cells, endothelial cells, macrophages, or lymphocytes. ACE protein was localized in the intima, whereas the overlying media was largely free of ACE staining. In less complicated lesions, ACE staining was modest and could be visualized in scattered clusters of macrophages and on the luminal side of carotid artery vascular endothelium. Smooth muscle cells were largely negative. ACE staining increased as lesions became more complex and was most prominent in macrophage-rich regions. The shoulder regions of plaques contained numerous ACE-positive macrophage foam cells and lymphocytes. In these areas, microvessels were positive for endothelial cell and smooth muscle cell ACE expression. However, microvessels in plaques free of inflammatory cells were stained only faintly for ACE expression. Labeling for ACE mRNA mirrored the pattern of protein expression, localizing ACE mRNA to macrophages and microvessels within the intima. In conclusion, atherosclerosis alters carotid artery ACE production, increasing transcription and translation within regions of plaque inflammation. These data provide another important mechanism by which inflammation associated with increased ACE expression may contribute to the progression of atherosclerosis. |
---|---|
ISSN: | 0194-911X 1524-4563 |
DOI: | 10.1161/01.hyp.35.1.353 |