Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth

We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2001-01, Vol.43 (6), p.135-141
Hauptverfasser: Kreft, J U, Wimpenny, J W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 6
container_start_page 135
container_title Water science and technology
container_volume 43
creator Kreft, J U
Wimpenny, J W
description We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Leudeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.
doi_str_mv 10.2166/wst.2001.0358
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70863857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943415329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ff91eb3eae7f21e403b532b343fbc7bee99065ddb9f830c1512482da06b5c313</originalsourceid><addsrcrecordid>eNqFkUtrFUEQRhsfmJvo0q00CNnNtap7Xr2UcDVCQMHsm35U61xmpmP3TEL-vT3kiuDGVUF9h48qDmNvEfYC2_bDQ172AgD3IJv-GduhUm2lOimes3NUAEKIHtQLtgPRyQqFkGfsPOcjAHSyhlfsDFH2qBq1Y8dDCOQWHgM_fPvO48ztEMMwTjwvaXXLmoib2fOwzm4ZSmwyT3RPZiTP7WPJ-DD74X7wqxkra3JZT9HTuDX-qfqR4sPy8zV7GcyY6c1pXrDbT4fbq-vq5uvnL1cfbypXY71UISgkK8lQFwRSDdI2UlhZy2BdZ4mUgrbx3qrQS3DYoKh74Q20tnES5QW7fKq9S_HXSnnR05AdjaOZKa5Zd9C3sm-6_4LY9aqWuIHv_wGPcU1z-UFjIWos96lCVU-USzHnREHfpWEy6VEj6M2bLt705k1v3gr_7tS62on8X_rkRv4Gi8iRNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943415329</pqid></control><display><type>article</type><title>Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kreft, J U ; Wimpenny, J W</creator><contributor>Flemming, H-C ; Leis, A</contributor><creatorcontrib>Kreft, J U ; Wimpenny, J W ; Flemming, H-C ; Leis, A</creatorcontrib><description>We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Leudeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 1900222809</identifier><identifier>ISBN: 9781900222808</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2001.0358</identifier><identifier>PMID: 11381959</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Ammonia ; Ammonia - metabolism ; Biofilms ; Biofilms - growth &amp; development ; Biomass ; Biopolymers - biosynthesis ; Clustering ; Computer simulation ; Dye dispersion ; Extracellular ; Extracellular Matrix - metabolism ; Forces (mechanics) ; Growth rate ; Kinetics ; Mathematical models ; Models, Biological ; Nitrites - metabolism ; Patchiness ; Porosity ; Roughness ; Structure-function relationships ; Substrates ; Two dimensional models ; Vertical profiles</subject><ispartof>Water science and technology, 2001-01, Vol.43 (6), p.135-141</ispartof><rights>Copyright IWA Publishing Mar 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ff91eb3eae7f21e403b532b343fbc7bee99065ddb9f830c1512482da06b5c313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11381959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Flemming, H-C</contributor><contributor>Leis, A</contributor><creatorcontrib>Kreft, J U</creatorcontrib><creatorcontrib>Wimpenny, J W</creatorcontrib><title>Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Leudeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.</description><subject>Ammonia</subject><subject>Ammonia - metabolism</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biomass</subject><subject>Biopolymers - biosynthesis</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Dye dispersion</subject><subject>Extracellular</subject><subject>Extracellular Matrix - metabolism</subject><subject>Forces (mechanics)</subject><subject>Growth rate</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Nitrites - metabolism</subject><subject>Patchiness</subject><subject>Porosity</subject><subject>Roughness</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>Two dimensional models</subject><subject>Vertical profiles</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>1900222809</isbn><isbn>9781900222808</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtrFUEQRhsfmJvo0q00CNnNtap7Xr2UcDVCQMHsm35U61xmpmP3TEL-vT3kiuDGVUF9h48qDmNvEfYC2_bDQ172AgD3IJv-GduhUm2lOimes3NUAEKIHtQLtgPRyQqFkGfsPOcjAHSyhlfsDFH2qBq1Y8dDCOQWHgM_fPvO48ztEMMwTjwvaXXLmoib2fOwzm4ZSmwyT3RPZiTP7WPJ-DD74X7wqxkra3JZT9HTuDX-qfqR4sPy8zV7GcyY6c1pXrDbT4fbq-vq5uvnL1cfbypXY71UISgkK8lQFwRSDdI2UlhZy2BdZ4mUgrbx3qrQS3DYoKh74Q20tnES5QW7fKq9S_HXSnnR05AdjaOZKa5Zd9C3sm-6_4LY9aqWuIHv_wGPcU1z-UFjIWos96lCVU-USzHnREHfpWEy6VEj6M2bLt705k1v3gr_7tS62on8X_rkRv4Gi8iRNQ</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Kreft, J U</creator><creator>Wimpenny, J W</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20010101</creationdate><title>Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth</title><author>Kreft, J U ; Wimpenny, J W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ff91eb3eae7f21e403b532b343fbc7bee99065ddb9f830c1512482da06b5c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Ammonia</topic><topic>Ammonia - metabolism</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biomass</topic><topic>Biopolymers - biosynthesis</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Dye dispersion</topic><topic>Extracellular</topic><topic>Extracellular Matrix - metabolism</topic><topic>Forces (mechanics)</topic><topic>Growth rate</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Nitrites - metabolism</topic><topic>Patchiness</topic><topic>Porosity</topic><topic>Roughness</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>Two dimensional models</topic><topic>Vertical profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreft, J U</creatorcontrib><creatorcontrib>Wimpenny, J W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreft, J U</au><au>Wimpenny, J W</au><au>Flemming, H-C</au><au>Leis, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>43</volume><issue>6</issue><spage>135</spage><epage>141</epage><pages>135-141</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>1900222809</isbn><isbn>9781900222808</isbn><abstract>We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Leudeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>11381959</pmid><doi>10.2166/wst.2001.0358</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2001-01, Vol.43 (6), p.135-141
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_70863857
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Ammonia
Ammonia - metabolism
Biofilms
Biofilms - growth & development
Biomass
Biopolymers - biosynthesis
Clustering
Computer simulation
Dye dispersion
Extracellular
Extracellular Matrix - metabolism
Forces (mechanics)
Growth rate
Kinetics
Mathematical models
Models, Biological
Nitrites - metabolism
Patchiness
Porosity
Roughness
Structure-function relationships
Substrates
Two dimensional models
Vertical profiles
title Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20EPS%20on%20biofilm%20structure%20and%20function%20as%20revealed%20by%20an%20individual-based%20model%20of%20biofilm%20growth&rft.jtitle=Water%20science%20and%20technology&rft.au=Kreft,%20J%20U&rft.date=2001-01-01&rft.volume=43&rft.issue=6&rft.spage=135&rft.epage=141&rft.pages=135-141&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=1900222809&rft.isbn_list=9781900222808&rft_id=info:doi/10.2166/wst.2001.0358&rft_dat=%3Cproquest_cross%3E1943415329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943415329&rft_id=info:pmid/11381959&rfr_iscdi=true