Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth
We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all sub...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2001-01, Vol.43 (6), p.135-141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 6 |
container_start_page | 135 |
container_title | Water science and technology |
container_volume | 43 |
creator | Kreft, J U Wimpenny, J W |
description | We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Leudeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering. |
doi_str_mv | 10.2166/wst.2001.0358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70863857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943415329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ff91eb3eae7f21e403b532b343fbc7bee99065ddb9f830c1512482da06b5c313</originalsourceid><addsrcrecordid>eNqFkUtrFUEQRhsfmJvo0q00CNnNtap7Xr2UcDVCQMHsm35U61xmpmP3TEL-vT3kiuDGVUF9h48qDmNvEfYC2_bDQ172AgD3IJv-GduhUm2lOimes3NUAEKIHtQLtgPRyQqFkGfsPOcjAHSyhlfsDFH2qBq1Y8dDCOQWHgM_fPvO48ztEMMwTjwvaXXLmoib2fOwzm4ZSmwyT3RPZiTP7WPJ-DD74X7wqxkra3JZT9HTuDX-qfqR4sPy8zV7GcyY6c1pXrDbT4fbq-vq5uvnL1cfbypXY71UISgkK8lQFwRSDdI2UlhZy2BdZ4mUgrbx3qrQS3DYoKh74Q20tnES5QW7fKq9S_HXSnnR05AdjaOZKa5Zd9C3sm-6_4LY9aqWuIHv_wGPcU1z-UFjIWos96lCVU-USzHnREHfpWEy6VEj6M2bLt705k1v3gr_7tS62on8X_rkRv4Gi8iRNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943415329</pqid></control><display><type>article</type><title>Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kreft, J U ; Wimpenny, J W</creator><contributor>Flemming, H-C ; Leis, A</contributor><creatorcontrib>Kreft, J U ; Wimpenny, J W ; Flemming, H-C ; Leis, A</creatorcontrib><description>We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Leudeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 1900222809</identifier><identifier>ISBN: 9781900222808</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2001.0358</identifier><identifier>PMID: 11381959</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Ammonia ; Ammonia - metabolism ; Biofilms ; Biofilms - growth & development ; Biomass ; Biopolymers - biosynthesis ; Clustering ; Computer simulation ; Dye dispersion ; Extracellular ; Extracellular Matrix - metabolism ; Forces (mechanics) ; Growth rate ; Kinetics ; Mathematical models ; Models, Biological ; Nitrites - metabolism ; Patchiness ; Porosity ; Roughness ; Structure-function relationships ; Substrates ; Two dimensional models ; Vertical profiles</subject><ispartof>Water science and technology, 2001-01, Vol.43 (6), p.135-141</ispartof><rights>Copyright IWA Publishing Mar 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ff91eb3eae7f21e403b532b343fbc7bee99065ddb9f830c1512482da06b5c313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11381959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Flemming, H-C</contributor><contributor>Leis, A</contributor><creatorcontrib>Kreft, J U</creatorcontrib><creatorcontrib>Wimpenny, J W</creatorcontrib><title>Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Leudeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.</description><subject>Ammonia</subject><subject>Ammonia - metabolism</subject><subject>Biofilms</subject><subject>Biofilms - growth & development</subject><subject>Biomass</subject><subject>Biopolymers - biosynthesis</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Dye dispersion</subject><subject>Extracellular</subject><subject>Extracellular Matrix - metabolism</subject><subject>Forces (mechanics)</subject><subject>Growth rate</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Nitrites - metabolism</subject><subject>Patchiness</subject><subject>Porosity</subject><subject>Roughness</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>Two dimensional models</subject><subject>Vertical profiles</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>1900222809</isbn><isbn>9781900222808</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtrFUEQRhsfmJvo0q00CNnNtap7Xr2UcDVCQMHsm35U61xmpmP3TEL-vT3kiuDGVUF9h48qDmNvEfYC2_bDQ172AgD3IJv-GduhUm2lOimes3NUAEKIHtQLtgPRyQqFkGfsPOcjAHSyhlfsDFH2qBq1Y8dDCOQWHgM_fPvO48ztEMMwTjwvaXXLmoib2fOwzm4ZSmwyT3RPZiTP7WPJ-DD74X7wqxkra3JZT9HTuDX-qfqR4sPy8zV7GcyY6c1pXrDbT4fbq-vq5uvnL1cfbypXY71UISgkK8lQFwRSDdI2UlhZy2BdZ4mUgrbx3qrQS3DYoKh74Q20tnES5QW7fKq9S_HXSnnR05AdjaOZKa5Zd9C3sm-6_4LY9aqWuIHv_wGPcU1z-UFjIWos96lCVU-USzHnREHfpWEy6VEj6M2bLt705k1v3gr_7tS62on8X_rkRv4Gi8iRNQ</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Kreft, J U</creator><creator>Wimpenny, J W</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20010101</creationdate><title>Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth</title><author>Kreft, J U ; Wimpenny, J W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ff91eb3eae7f21e403b532b343fbc7bee99065ddb9f830c1512482da06b5c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Ammonia</topic><topic>Ammonia - metabolism</topic><topic>Biofilms</topic><topic>Biofilms - growth & development</topic><topic>Biomass</topic><topic>Biopolymers - biosynthesis</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Dye dispersion</topic><topic>Extracellular</topic><topic>Extracellular Matrix - metabolism</topic><topic>Forces (mechanics)</topic><topic>Growth rate</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Nitrites - metabolism</topic><topic>Patchiness</topic><topic>Porosity</topic><topic>Roughness</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>Two dimensional models</topic><topic>Vertical profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreft, J U</creatorcontrib><creatorcontrib>Wimpenny, J W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreft, J U</au><au>Wimpenny, J W</au><au>Flemming, H-C</au><au>Leis, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>43</volume><issue>6</issue><spage>135</spage><epage>141</epage><pages>135-141</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>1900222809</isbn><isbn>9781900222808</isbn><abstract>We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Leudeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>11381959</pmid><doi>10.2166/wst.2001.0358</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2001-01, Vol.43 (6), p.135-141 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_70863857 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Ammonia Ammonia - metabolism Biofilms Biofilms - growth & development Biomass Biopolymers - biosynthesis Clustering Computer simulation Dye dispersion Extracellular Extracellular Matrix - metabolism Forces (mechanics) Growth rate Kinetics Mathematical models Models, Biological Nitrites - metabolism Patchiness Porosity Roughness Structure-function relationships Substrates Two dimensional models Vertical profiles |
title | Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20EPS%20on%20biofilm%20structure%20and%20function%20as%20revealed%20by%20an%20individual-based%20model%20of%20biofilm%20growth&rft.jtitle=Water%20science%20and%20technology&rft.au=Kreft,%20J%20U&rft.date=2001-01-01&rft.volume=43&rft.issue=6&rft.spage=135&rft.epage=141&rft.pages=135-141&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=1900222809&rft.isbn_list=9781900222808&rft_id=info:doi/10.2166/wst.2001.0358&rft_dat=%3Cproquest_cross%3E1943415329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943415329&rft_id=info:pmid/11381959&rfr_iscdi=true |