Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure–retention relationships

Quantitative structure–retention relationships (QSRRs) were derived for logarithms of retention factors normalised to a hypothetical zero percent organic modifier eluent, log k w, determined on 18 reversed-phase high-performance liquid chromatography (RP-HPLC) columns for 25 carefully designed, stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 1999-09, Vol.855 (2), p.455-486
Hauptverfasser: Kaliszan, Roman, van Straten, Marion A., Markuszewski, Michal, Cramers, Carel A., Claessens, Henk A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 2
container_start_page 455
container_title Journal of Chromatography A
container_volume 855
creator Kaliszan, Roman
van Straten, Marion A.
Markuszewski, Michal
Cramers, Carel A.
Claessens, Henk A.
description Quantitative structure–retention relationships (QSRRs) were derived for logarithms of retention factors normalised to a hypothetical zero percent organic modifier eluent, log k w, determined on 18 reversed-phase high-performance liquid chromatography (RP-HPLC) columns for 25 carefully designed, structurally diverse test analytes. The study was aimed at elucidating molecular mechanism of retention and at finding an objective manner of quantitative comparison of retention properties and classification of modern stationary phases for RP-HPLC. Three QSRR approaches were employed: (i) relating log k w to logarithms of octanol–water partition coefficient (log P); (ii) describing log k w in terms of linear solvation-energy relationship-based parameters of Abraham; (iii) regressing log k w against simple structural descriptors acquired by calculation chemistry. All the approaches produced statistically significant and physically interpretable QSRRs. By means of QSRRs the stationary phase materials were classified according to the prevailing intermolecular interactions in the separation process. Hydrophobic properties of the columns tested were parametrized. Abilities of individual phases to provide contributions to the overall retention due to non-polar London-type intermolecular interactions were quantified. Measures of hydrogen-bond donor activity and dipolarity of stationary phases are proposed along with two other phase polarity parameters. The parameters proposed quantitatively characterize the RP-HPLC stationary phases and provide a rational explanation for the differences in retention patterns of individual columns observed when applying the conventional empirical testing methods.
doi_str_mv 10.1016/S0021-9673(99)00742-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70837962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967399007426</els_id><sourcerecordid>70837962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-73b8854556f57f90db7cb6a5ac1f19a56c5921f2f6e20a7b8bf68832c79da87a3</originalsourceid><addsrcrecordid>eNqFkU2O1DAQhbMAMcPAEUBeIASLgJ107HiFRiP-pEEsgLVVccodoyROu5KWescduBFH4SS40y2GHSvL5e-9KtfLsieCvxJcyNdfOC9ErqUqX2j9knO1KXJ5L7v8W77IHhJ951worooH2YXgldC8lpfZr0-hR7v0ENmAtoPR08CCYxFnHGcfRubHdNljJGzzqQNC1vltl08YXYgDjBZZ73eLb5ntYhhgDtsIU3dgMKZSD0TeeQurVzIeQotxZDSvFYgHtpoSaw5sIT9u2W6B1Pn4vsfExcXOS8TfP37ezRSxX-XU-YkeZfcd9ISPz-dV9u3d2683H_Lbz-8_3lzf5nZTyTlXZVPX1aaqpKuU07xtlG0kVGCFExoqaStdCFc4iQUH1dSNk3VdFlbpFmoF5VX2_OQ7xbBbkGYzeLLY9zBiWMgoXpdKyyKB1Qm0MRBFdGaKfkhfNYKbY2BmDcwckzFamzUwI5Pu6bnB0gzY_qM6pZWAZ2cAyELvYtq-pztOy3pTbRL25oRh2sbeYzRkPaagWh_RzqYN_j-T_AGlvLzx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70837962</pqid></control><display><type>article</type><title>Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure–retention relationships</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kaliszan, Roman ; van Straten, Marion A. ; Markuszewski, Michal ; Cramers, Carel A. ; Claessens, Henk A.</creator><creatorcontrib>Kaliszan, Roman ; van Straten, Marion A. ; Markuszewski, Michal ; Cramers, Carel A. ; Claessens, Henk A.</creatorcontrib><description>Quantitative structure–retention relationships (QSRRs) were derived for logarithms of retention factors normalised to a hypothetical zero percent organic modifier eluent, log k w, determined on 18 reversed-phase high-performance liquid chromatography (RP-HPLC) columns for 25 carefully designed, structurally diverse test analytes. The study was aimed at elucidating molecular mechanism of retention and at finding an objective manner of quantitative comparison of retention properties and classification of modern stationary phases for RP-HPLC. Three QSRR approaches were employed: (i) relating log k w to logarithms of octanol–water partition coefficient (log P); (ii) describing log k w in terms of linear solvation-energy relationship-based parameters of Abraham; (iii) regressing log k w against simple structural descriptors acquired by calculation chemistry. All the approaches produced statistically significant and physically interpretable QSRRs. By means of QSRRs the stationary phase materials were classified according to the prevailing intermolecular interactions in the separation process. Hydrophobic properties of the columns tested were parametrized. Abilities of individual phases to provide contributions to the overall retention due to non-polar London-type intermolecular interactions were quantified. Measures of hydrogen-bond donor activity and dipolarity of stationary phases are proposed along with two other phase polarity parameters. The parameters proposed quantitatively characterize the RP-HPLC stationary phases and provide a rational explanation for the differences in retention patterns of individual columns observed when applying the conventional empirical testing methods.</description><identifier>ISSN: 0021-9673</identifier><identifier>DOI: 10.1016/S0021-9673(99)00742-6</identifier><identifier>PMID: 10519086</identifier><identifier>CODEN: JOCRAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography, High Pressure Liquid - instrumentation ; Chromatography, High Pressure Liquid - methods ; Exact sciences and technology ; Other chromatographic methods ; Spectrophotometry, Ultraviolet ; Structure-Activity Relationship</subject><ispartof>Journal of Chromatography A, 1999-09, Vol.855 (2), p.455-486</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-73b8854556f57f90db7cb6a5ac1f19a56c5921f2f6e20a7b8bf68832c79da87a3</citedby><cites>FETCH-LOGICAL-c456t-73b8854556f57f90db7cb6a5ac1f19a56c5921f2f6e20a7b8bf68832c79da87a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0021-9673(99)00742-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1968454$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10519086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaliszan, Roman</creatorcontrib><creatorcontrib>van Straten, Marion A.</creatorcontrib><creatorcontrib>Markuszewski, Michal</creatorcontrib><creatorcontrib>Cramers, Carel A.</creatorcontrib><creatorcontrib>Claessens, Henk A.</creatorcontrib><title>Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure–retention relationships</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>Quantitative structure–retention relationships (QSRRs) were derived for logarithms of retention factors normalised to a hypothetical zero percent organic modifier eluent, log k w, determined on 18 reversed-phase high-performance liquid chromatography (RP-HPLC) columns for 25 carefully designed, structurally diverse test analytes. The study was aimed at elucidating molecular mechanism of retention and at finding an objective manner of quantitative comparison of retention properties and classification of modern stationary phases for RP-HPLC. Three QSRR approaches were employed: (i) relating log k w to logarithms of octanol–water partition coefficient (log P); (ii) describing log k w in terms of linear solvation-energy relationship-based parameters of Abraham; (iii) regressing log k w against simple structural descriptors acquired by calculation chemistry. All the approaches produced statistically significant and physically interpretable QSRRs. By means of QSRRs the stationary phase materials were classified according to the prevailing intermolecular interactions in the separation process. Hydrophobic properties of the columns tested were parametrized. Abilities of individual phases to provide contributions to the overall retention due to non-polar London-type intermolecular interactions were quantified. Measures of hydrogen-bond donor activity and dipolarity of stationary phases are proposed along with two other phase polarity parameters. The parameters proposed quantitatively characterize the RP-HPLC stationary phases and provide a rational explanation for the differences in retention patterns of individual columns observed when applying the conventional empirical testing methods.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography, High Pressure Liquid - instrumentation</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Exact sciences and technology</subject><subject>Other chromatographic methods</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Structure-Activity Relationship</subject><issn>0021-9673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2O1DAQhbMAMcPAEUBeIASLgJ107HiFRiP-pEEsgLVVccodoyROu5KWescduBFH4SS40y2GHSvL5e-9KtfLsieCvxJcyNdfOC9ErqUqX2j9knO1KXJ5L7v8W77IHhJ951worooH2YXgldC8lpfZr0-hR7v0ENmAtoPR08CCYxFnHGcfRubHdNljJGzzqQNC1vltl08YXYgDjBZZ73eLb5ntYhhgDtsIU3dgMKZSD0TeeQurVzIeQotxZDSvFYgHtpoSaw5sIT9u2W6B1Pn4vsfExcXOS8TfP37ezRSxX-XU-YkeZfcd9ISPz-dV9u3d2683H_Lbz-8_3lzf5nZTyTlXZVPX1aaqpKuU07xtlG0kVGCFExoqaStdCFc4iQUH1dSNk3VdFlbpFmoF5VX2_OQ7xbBbkGYzeLLY9zBiWMgoXpdKyyKB1Qm0MRBFdGaKfkhfNYKbY2BmDcwckzFamzUwI5Pu6bnB0gzY_qM6pZWAZ2cAyELvYtq-pztOy3pTbRL25oRh2sbeYzRkPaagWh_RzqYN_j-T_AGlvLzx</recordid><startdate>19990910</startdate><enddate>19990910</enddate><creator>Kaliszan, Roman</creator><creator>van Straten, Marion A.</creator><creator>Markuszewski, Michal</creator><creator>Cramers, Carel A.</creator><creator>Claessens, Henk A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990910</creationdate><title>Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure–retention relationships</title><author>Kaliszan, Roman ; van Straten, Marion A. ; Markuszewski, Michal ; Cramers, Carel A. ; Claessens, Henk A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-73b8854556f57f90db7cb6a5ac1f19a56c5921f2f6e20a7b8bf68832c79da87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography, High Pressure Liquid - instrumentation</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Exact sciences and technology</topic><topic>Other chromatographic methods</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaliszan, Roman</creatorcontrib><creatorcontrib>van Straten, Marion A.</creatorcontrib><creatorcontrib>Markuszewski, Michal</creatorcontrib><creatorcontrib>Cramers, Carel A.</creatorcontrib><creatorcontrib>Claessens, Henk A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaliszan, Roman</au><au>van Straten, Marion A.</au><au>Markuszewski, Michal</au><au>Cramers, Carel A.</au><au>Claessens, Henk A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure–retention relationships</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>1999-09-10</date><risdate>1999</risdate><volume>855</volume><issue>2</issue><spage>455</spage><epage>486</epage><pages>455-486</pages><issn>0021-9673</issn><coden>JOCRAM</coden><abstract>Quantitative structure–retention relationships (QSRRs) were derived for logarithms of retention factors normalised to a hypothetical zero percent organic modifier eluent, log k w, determined on 18 reversed-phase high-performance liquid chromatography (RP-HPLC) columns for 25 carefully designed, structurally diverse test analytes. The study was aimed at elucidating molecular mechanism of retention and at finding an objective manner of quantitative comparison of retention properties and classification of modern stationary phases for RP-HPLC. Three QSRR approaches were employed: (i) relating log k w to logarithms of octanol–water partition coefficient (log P); (ii) describing log k w in terms of linear solvation-energy relationship-based parameters of Abraham; (iii) regressing log k w against simple structural descriptors acquired by calculation chemistry. All the approaches produced statistically significant and physically interpretable QSRRs. By means of QSRRs the stationary phase materials were classified according to the prevailing intermolecular interactions in the separation process. Hydrophobic properties of the columns tested were parametrized. Abilities of individual phases to provide contributions to the overall retention due to non-polar London-type intermolecular interactions were quantified. Measures of hydrogen-bond donor activity and dipolarity of stationary phases are proposed along with two other phase polarity parameters. The parameters proposed quantitatively characterize the RP-HPLC stationary phases and provide a rational explanation for the differences in retention patterns of individual columns observed when applying the conventional empirical testing methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>10519086</pmid><doi>10.1016/S0021-9673(99)00742-6</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9673
ispartof Journal of Chromatography A, 1999-09, Vol.855 (2), p.455-486
issn 0021-9673
language eng
recordid cdi_proquest_miscellaneous_70837962
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Analytical chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography, High Pressure Liquid - instrumentation
Chromatography, High Pressure Liquid - methods
Exact sciences and technology
Other chromatographic methods
Spectrophotometry, Ultraviolet
Structure-Activity Relationship
title Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure–retention relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20retention%20in%20reversed-phase%20high-performance%20liquid%20chromatography%20and%20classification%20of%20modern%20stationary%20phases%20by%20using%20quantitative%20structure%E2%80%93retention%20relationships&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Kaliszan,%20Roman&rft.date=1999-09-10&rft.volume=855&rft.issue=2&rft.spage=455&rft.epage=486&rft.pages=455-486&rft.issn=0021-9673&rft.coden=JOCRAM&rft_id=info:doi/10.1016/S0021-9673(99)00742-6&rft_dat=%3Cproquest_cross%3E70837962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70837962&rft_id=info:pmid/10519086&rft_els_id=S0021967399007426&rfr_iscdi=true