Solvent mobility and the protein 'glass' transition
Proteins and other biomolecules undergo a dynamic transition near 200 K to a glass-like solid state with small atomic fluctuations. This dynamic transition can inhibit biological function. To provide a deeper understanding of the relative importance of solvent mobility and the intrinsic protein ener...
Gespeichert in:
Veröffentlicht in: | Nature Structural Biology 2000, Vol.7 (1), p.34-38 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 34 |
container_title | Nature Structural Biology |
container_volume | 7 |
creator | Vitkup, Dennis Ringe, Dagmar Petsko, Gregory A. Karplus, Martin |
description | Proteins and other biomolecules undergo a dynamic transition near 200 K to a glass-like solid state with small atomic fluctuations. This dynamic transition can inhibit biological function. To provide a deeper understanding of the relative importance of solvent mobility and the intrinsic protein energy surface in the transition, a novel molecular dynamics simulation procedure with the protein and solvent at different temperatures has been used. Solvent mobility is shown to be the dominant factor in determining the atomic fluctuations above 180 K, although intrinsic protein effects become important at lower temperatures. The simulations thus complement experimental studies by demonstrating the essential role of solvent in controlling functionally important protein fluctuations. |
doi_str_mv | 10.1038/71231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70831291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1044775031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-d52c87f208953bc52911fafb09bf2f02731d732a2c1ec58f5ef99b9a06088a83</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobs79BSleuKtqTtI0yaUMv2DghbsPaZvMjDadTSrs3xt1MvDqHDgP73l5EJoDvgVMxR0HQuEETYEVLJdSsNO0Y05yQUsxQRchbDEmjHF6jiaAS8IKUkwRfevbT-Nj1vWVa13cZ9o3WXw32W7oo3E-W2xaHcIii4P2wUXX-0t0ZnUbzPwwZ2j9-LBePuer16eX5f0qrymGmDeM1IJbgoVktKoZkQBW2wrLyhKLCafQcEo0qcHUTFhmrJSV1LjEQmhBZ-jmNzY1-RhNiKpzoTZtq73px6A4FhRSaAKv_4Hbfhx8qqYIEZRyEEWCrg7QWHWmUbvBdXrYqz8Vx3chnfzGDMcUwOrbsfpxTL8ApAJomg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228337184</pqid></control><display><type>article</type><title>Solvent mobility and the protein 'glass' transition</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Vitkup, Dennis ; Ringe, Dagmar ; Petsko, Gregory A. ; Karplus, Martin</creator><creatorcontrib>Vitkup, Dennis ; Ringe, Dagmar ; Petsko, Gregory A. ; Karplus, Martin</creatorcontrib><description>Proteins and other biomolecules undergo a dynamic transition near 200 K to a glass-like solid state with small atomic fluctuations. This dynamic transition can inhibit biological function. To provide a deeper understanding of the relative importance of solvent mobility and the intrinsic protein energy surface in the transition, a novel molecular dynamics simulation procedure with the protein and solvent at different temperatures has been used. Solvent mobility is shown to be the dominant factor in determining the atomic fluctuations above 180 K, although intrinsic protein effects become important at lower temperatures. The simulations thus complement experimental studies by demonstrating the essential role of solvent in controlling functionally important protein fluctuations.</description><identifier>ISSN: 1072-8368</identifier><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/71231</identifier><identifier>PMID: 10625424</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Computer Simulation ; Fluctuations ; Freezing ; Glass - chemistry ; Hot Temperature ; Kinetics ; letter ; Life Sciences ; Low temperature ; Membrane Biology ; Myoglobin - chemistry ; Myoglobin - metabolism ; Protein Structure ; Protein Structure, Secondary ; Solvents ; Solvents - chemistry ; Solvents - metabolism ; Temperature ; Thermodynamics ; Viscosity ; Water - metabolism</subject><ispartof>Nature Structural Biology, 2000, Vol.7 (1), p.34-38</ispartof><rights>Nature America Inc. 2000</rights><rights>Copyright Nature Publishing Group Jan 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-d52c87f208953bc52911fafb09bf2f02731d732a2c1ec58f5ef99b9a06088a83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/71231$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/71231$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10625424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vitkup, Dennis</creatorcontrib><creatorcontrib>Ringe, Dagmar</creatorcontrib><creatorcontrib>Petsko, Gregory A.</creatorcontrib><creatorcontrib>Karplus, Martin</creatorcontrib><title>Solvent mobility and the protein 'glass' transition</title><title>Nature Structural Biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Biol</addtitle><description>Proteins and other biomolecules undergo a dynamic transition near 200 K to a glass-like solid state with small atomic fluctuations. This dynamic transition can inhibit biological function. To provide a deeper understanding of the relative importance of solvent mobility and the intrinsic protein energy surface in the transition, a novel molecular dynamics simulation procedure with the protein and solvent at different temperatures has been used. Solvent mobility is shown to be the dominant factor in determining the atomic fluctuations above 180 K, although intrinsic protein effects become important at lower temperatures. The simulations thus complement experimental studies by demonstrating the essential role of solvent in controlling functionally important protein fluctuations.</description><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Computer Simulation</subject><subject>Fluctuations</subject><subject>Freezing</subject><subject>Glass - chemistry</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Low temperature</subject><subject>Membrane Biology</subject><subject>Myoglobin - chemistry</subject><subject>Myoglobin - metabolism</subject><subject>Protein Structure</subject><subject>Protein Structure, Secondary</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Solvents - metabolism</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Viscosity</subject><subject>Water - metabolism</subject><issn>1072-8368</issn><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkF1LwzAUhoMobs79BSleuKtqTtI0yaUMv2DghbsPaZvMjDadTSrs3xt1MvDqHDgP73l5EJoDvgVMxR0HQuEETYEVLJdSsNO0Y05yQUsxQRchbDEmjHF6jiaAS8IKUkwRfevbT-Nj1vWVa13cZ9o3WXw32W7oo3E-W2xaHcIii4P2wUXX-0t0ZnUbzPwwZ2j9-LBePuer16eX5f0qrymGmDeM1IJbgoVktKoZkQBW2wrLyhKLCafQcEo0qcHUTFhmrJSV1LjEQmhBZ-jmNzY1-RhNiKpzoTZtq73px6A4FhRSaAKv_4Hbfhx8qqYIEZRyEEWCrg7QWHWmUbvBdXrYqz8Vx3chnfzGDMcUwOrbsfpxTL8ApAJomg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Vitkup, Dennis</creator><creator>Ringe, Dagmar</creator><creator>Petsko, Gregory A.</creator><creator>Karplus, Martin</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2000</creationdate><title>Solvent mobility and the protein 'glass' transition</title><author>Vitkup, Dennis ; Ringe, Dagmar ; Petsko, Gregory A. ; Karplus, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-d52c87f208953bc52911fafb09bf2f02731d732a2c1ec58f5ef99b9a06088a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Computer Simulation</topic><topic>Fluctuations</topic><topic>Freezing</topic><topic>Glass - chemistry</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Low temperature</topic><topic>Membrane Biology</topic><topic>Myoglobin - chemistry</topic><topic>Myoglobin - metabolism</topic><topic>Protein Structure</topic><topic>Protein Structure, Secondary</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Solvents - metabolism</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Viscosity</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitkup, Dennis</creatorcontrib><creatorcontrib>Ringe, Dagmar</creatorcontrib><creatorcontrib>Petsko, Gregory A.</creatorcontrib><creatorcontrib>Karplus, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Structural Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitkup, Dennis</au><au>Ringe, Dagmar</au><au>Petsko, Gregory A.</au><au>Karplus, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent mobility and the protein 'glass' transition</atitle><jtitle>Nature Structural Biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Biol</addtitle><date>2000</date><risdate>2000</risdate><volume>7</volume><issue>1</issue><spage>34</spage><epage>38</epage><pages>34-38</pages><issn>1072-8368</issn><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Proteins and other biomolecules undergo a dynamic transition near 200 K to a glass-like solid state with small atomic fluctuations. This dynamic transition can inhibit biological function. To provide a deeper understanding of the relative importance of solvent mobility and the intrinsic protein energy surface in the transition, a novel molecular dynamics simulation procedure with the protein and solvent at different temperatures has been used. Solvent mobility is shown to be the dominant factor in determining the atomic fluctuations above 180 K, although intrinsic protein effects become important at lower temperatures. The simulations thus complement experimental studies by demonstrating the essential role of solvent in controlling functionally important protein fluctuations.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>10625424</pmid><doi>10.1038/71231</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-8368 |
ispartof | Nature Structural Biology, 2000, Vol.7 (1), p.34-38 |
issn | 1072-8368 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_70831291 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Biochemistry Biological Microscopy Biomedical and Life Sciences Computer Simulation Fluctuations Freezing Glass - chemistry Hot Temperature Kinetics letter Life Sciences Low temperature Membrane Biology Myoglobin - chemistry Myoglobin - metabolism Protein Structure Protein Structure, Secondary Solvents Solvents - chemistry Solvents - metabolism Temperature Thermodynamics Viscosity Water - metabolism |
title | Solvent mobility and the protein 'glass' transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20mobility%20and%20the%20protein%20'glass'%20transition&rft.jtitle=Nature%20Structural%20Biology&rft.au=Vitkup,%20Dennis&rft.date=2000&rft.volume=7&rft.issue=1&rft.spage=34&rft.epage=38&rft.pages=34-38&rft.issn=1072-8368&rft.eissn=1545-9985&rft_id=info:doi/10.1038/71231&rft_dat=%3Cproquest_pubme%3E1044775031%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228337184&rft_id=info:pmid/10625424&rfr_iscdi=true |