A fuzzy-genetic approach to breast cancer diagnosis
The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 1999-10, Vol.17 (2), p.131-155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 2 |
container_start_page | 131 |
container_title | Artificial intelligence in medicine |
container_volume | 17 |
creator | Peña-Reyes, Carlos Andrés Sipper, Moshe |
description | The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable. |
doi_str_mv | 10.1016/S0933-3657(99)00019-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70827468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365799000196</els_id><sourcerecordid>70827468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-a918a9aa4d7b80560b81362cf8290a767c5c9c28a4c50e6634f0f1c23cb91ec53</originalsourceid><addsrcrecordid>eNqFkctKw0AUhgdRbK0-gpKV6CI698tKSvEGBRfqepicTOpI29SZVGif3rQRcZfV2Xzn_D_nQ-ic4BuCibx9xYaxnEmhroy5xhgTk8sDNCRasZxqiQ_R8A8ZoJOUPltIcSKP0YBgQTTmeojYOKvW2-0mn_mlbwJkbrWKtYOPrKmzInqXmgzcEnzMyuBmyzqFdIqOKjdP_ux3jtD7w_3b5Cmfvjw-T8bTHLjgTe4M0c44x0tVaCwkLjRhkkKlqcFOSQUCDFDtOAjspWS8whUByqAwxINgI3TZ3W0bfa19auwiJPDzuVv6ep2swpoqLnUvKJRgQlLZC1JGBBXU9IOEC8ra946Q6ECIdUrRV3YVw8LFjSXY7kTZvSi7s2CNsXtRdtfk4jdgXSx8-W-rM9MCdx3g2w9_Bx9tguBbEWWIHhpb1qEn4gfWkKBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21452393</pqid></control><display><type>article</type><title>A fuzzy-genetic approach to breast cancer diagnosis</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Peña-Reyes, Carlos Andrés ; Sipper, Moshe</creator><creatorcontrib>Peña-Reyes, Carlos Andrés ; Sipper, Moshe</creatorcontrib><description>The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/S0933-3657(99)00019-6</identifier><identifier>PMID: 10518048</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Breast cancer ; Breast cancer diagnosis ; Breast Neoplasms - diagnosis ; Breast Neoplasms - genetics ; Computer applications ; Databases, Factual ; Diagnosis, Computer-Assisted - methods ; Diagnostic systems ; Evolutionary algorithms ; Female ; Fuzzy Logic ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Genome ; Humans ; Medicine ; Models, Biological ; Oncology</subject><ispartof>Artificial intelligence in medicine, 1999-10, Vol.17 (2), p.131-155</ispartof><rights>1999 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-a918a9aa4d7b80560b81362cf8290a767c5c9c28a4c50e6634f0f1c23cb91ec53</citedby><cites>FETCH-LOGICAL-c454t-a918a9aa4d7b80560b81362cf8290a767c5c9c28a4c50e6634f0f1c23cb91ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0933-3657(99)00019-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10518048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peña-Reyes, Carlos Andrés</creatorcontrib><creatorcontrib>Sipper, Moshe</creatorcontrib><title>A fuzzy-genetic approach to breast cancer diagnosis</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast cancer</subject><subject>Breast cancer diagnosis</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - genetics</subject><subject>Computer applications</subject><subject>Databases, Factual</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic systems</subject><subject>Evolutionary algorithms</subject><subject>Female</subject><subject>Fuzzy Logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Genome</subject><subject>Humans</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Oncology</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctKw0AUhgdRbK0-gpKV6CI698tKSvEGBRfqepicTOpI29SZVGif3rQRcZfV2Xzn_D_nQ-ic4BuCibx9xYaxnEmhroy5xhgTk8sDNCRasZxqiQ_R8A8ZoJOUPltIcSKP0YBgQTTmeojYOKvW2-0mn_mlbwJkbrWKtYOPrKmzInqXmgzcEnzMyuBmyzqFdIqOKjdP_ux3jtD7w_3b5Cmfvjw-T8bTHLjgTe4M0c44x0tVaCwkLjRhkkKlqcFOSQUCDFDtOAjspWS8whUByqAwxINgI3TZ3W0bfa19auwiJPDzuVv6ep2swpoqLnUvKJRgQlLZC1JGBBXU9IOEC8ra946Q6ECIdUrRV3YVw8LFjSXY7kTZvSi7s2CNsXtRdtfk4jdgXSx8-W-rM9MCdx3g2w9_Bx9tguBbEWWIHhpb1qEn4gfWkKBg</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Peña-Reyes, Carlos Andrés</creator><creator>Sipper, Moshe</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope></search><sort><creationdate>19991001</creationdate><title>A fuzzy-genetic approach to breast cancer diagnosis</title><author>Peña-Reyes, Carlos Andrés ; Sipper, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-a918a9aa4d7b80560b81362cf8290a767c5c9c28a4c50e6634f0f1c23cb91ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast cancer</topic><topic>Breast cancer diagnosis</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - genetics</topic><topic>Computer applications</topic><topic>Databases, Factual</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic systems</topic><topic>Evolutionary algorithms</topic><topic>Female</topic><topic>Fuzzy Logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Genome</topic><topic>Humans</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peña-Reyes, Carlos Andrés</creatorcontrib><creatorcontrib>Sipper, Moshe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peña-Reyes, Carlos Andrés</au><au>Sipper, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy-genetic approach to breast cancer diagnosis</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>17</volume><issue>2</issue><spage>131</spage><epage>155</epage><pages>131-155</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>10518048</pmid><doi>10.1016/S0933-3657(99)00019-6</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-3657 |
ispartof | Artificial intelligence in medicine, 1999-10, Vol.17 (2), p.131-155 |
issn | 0933-3657 1873-2860 |
language | eng |
recordid | cdi_proquest_miscellaneous_70827468 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Artificial Intelligence Breast cancer Breast cancer diagnosis Breast Neoplasms - diagnosis Breast Neoplasms - genetics Computer applications Databases, Factual Diagnosis, Computer-Assisted - methods Diagnostic systems Evolutionary algorithms Female Fuzzy Logic Fuzzy sets Fuzzy systems Genetic algorithms Genome Humans Medicine Models, Biological Oncology |
title | A fuzzy-genetic approach to breast cancer diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy-genetic%20approach%20to%20breast%20cancer%20diagnosis&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Pe%C3%B1a-Reyes,%20Carlos%20Andr%C3%A9s&rft.date=1999-10-01&rft.volume=17&rft.issue=2&rft.spage=131&rft.epage=155&rft.pages=131-155&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/S0933-3657(99)00019-6&rft_dat=%3Cproquest_cross%3E70827468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21452393&rft_id=info:pmid/10518048&rft_els_id=S0933365799000196&rfr_iscdi=true |