A fuzzy-genetic approach to breast cancer diagnosis

The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 1999-10, Vol.17 (2), p.131-155
Hauptverfasser: Peña-Reyes, Carlos Andrés, Sipper, Moshe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 2
container_start_page 131
container_title Artificial intelligence in medicine
container_volume 17
creator Peña-Reyes, Carlos Andrés
Sipper, Moshe
description The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable.
doi_str_mv 10.1016/S0933-3657(99)00019-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70827468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365799000196</els_id><sourcerecordid>70827468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-a918a9aa4d7b80560b81362cf8290a767c5c9c28a4c50e6634f0f1c23cb91ec53</originalsourceid><addsrcrecordid>eNqFkctKw0AUhgdRbK0-gpKV6CI698tKSvEGBRfqepicTOpI29SZVGif3rQRcZfV2Xzn_D_nQ-ic4BuCibx9xYaxnEmhroy5xhgTk8sDNCRasZxqiQ_R8A8ZoJOUPltIcSKP0YBgQTTmeojYOKvW2-0mn_mlbwJkbrWKtYOPrKmzInqXmgzcEnzMyuBmyzqFdIqOKjdP_ux3jtD7w_3b5Cmfvjw-T8bTHLjgTe4M0c44x0tVaCwkLjRhkkKlqcFOSQUCDFDtOAjspWS8whUByqAwxINgI3TZ3W0bfa19auwiJPDzuVv6ep2swpoqLnUvKJRgQlLZC1JGBBXU9IOEC8ra946Q6ECIdUrRV3YVw8LFjSXY7kTZvSi7s2CNsXtRdtfk4jdgXSx8-W-rM9MCdx3g2w9_Bx9tguBbEWWIHhpb1qEn4gfWkKBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21452393</pqid></control><display><type>article</type><title>A fuzzy-genetic approach to breast cancer diagnosis</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Peña-Reyes, Carlos Andrés ; Sipper, Moshe</creator><creatorcontrib>Peña-Reyes, Carlos Andrés ; Sipper, Moshe</creatorcontrib><description>The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/S0933-3657(99)00019-6</identifier><identifier>PMID: 10518048</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Breast cancer ; Breast cancer diagnosis ; Breast Neoplasms - diagnosis ; Breast Neoplasms - genetics ; Computer applications ; Databases, Factual ; Diagnosis, Computer-Assisted - methods ; Diagnostic systems ; Evolutionary algorithms ; Female ; Fuzzy Logic ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Genome ; Humans ; Medicine ; Models, Biological ; Oncology</subject><ispartof>Artificial intelligence in medicine, 1999-10, Vol.17 (2), p.131-155</ispartof><rights>1999 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-a918a9aa4d7b80560b81362cf8290a767c5c9c28a4c50e6634f0f1c23cb91ec53</citedby><cites>FETCH-LOGICAL-c454t-a918a9aa4d7b80560b81362cf8290a767c5c9c28a4c50e6634f0f1c23cb91ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0933-3657(99)00019-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10518048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peña-Reyes, Carlos Andrés</creatorcontrib><creatorcontrib>Sipper, Moshe</creatorcontrib><title>A fuzzy-genetic approach to breast cancer diagnosis</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast cancer</subject><subject>Breast cancer diagnosis</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - genetics</subject><subject>Computer applications</subject><subject>Databases, Factual</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic systems</subject><subject>Evolutionary algorithms</subject><subject>Female</subject><subject>Fuzzy Logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Genome</subject><subject>Humans</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Oncology</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctKw0AUhgdRbK0-gpKV6CI698tKSvEGBRfqepicTOpI29SZVGif3rQRcZfV2Xzn_D_nQ-ic4BuCibx9xYaxnEmhroy5xhgTk8sDNCRasZxqiQ_R8A8ZoJOUPltIcSKP0YBgQTTmeojYOKvW2-0mn_mlbwJkbrWKtYOPrKmzInqXmgzcEnzMyuBmyzqFdIqOKjdP_ux3jtD7w_3b5Cmfvjw-T8bTHLjgTe4M0c44x0tVaCwkLjRhkkKlqcFOSQUCDFDtOAjspWS8whUByqAwxINgI3TZ3W0bfa19auwiJPDzuVv6ep2swpoqLnUvKJRgQlLZC1JGBBXU9IOEC8ra946Q6ECIdUrRV3YVw8LFjSXY7kTZvSi7s2CNsXtRdtfk4jdgXSx8-W-rM9MCdx3g2w9_Bx9tguBbEWWIHhpb1qEn4gfWkKBg</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Peña-Reyes, Carlos Andrés</creator><creator>Sipper, Moshe</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope></search><sort><creationdate>19991001</creationdate><title>A fuzzy-genetic approach to breast cancer diagnosis</title><author>Peña-Reyes, Carlos Andrés ; Sipper, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-a918a9aa4d7b80560b81362cf8290a767c5c9c28a4c50e6634f0f1c23cb91ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast cancer</topic><topic>Breast cancer diagnosis</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - genetics</topic><topic>Computer applications</topic><topic>Databases, Factual</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic systems</topic><topic>Evolutionary algorithms</topic><topic>Female</topic><topic>Fuzzy Logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Genome</topic><topic>Humans</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peña-Reyes, Carlos Andrés</creatorcontrib><creatorcontrib>Sipper, Moshe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peña-Reyes, Carlos Andrés</au><au>Sipper, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy-genetic approach to breast cancer diagnosis</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>17</volume><issue>2</issue><spage>131</spage><epage>155</epage><pages>131-155</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>10518048</pmid><doi>10.1016/S0933-3657(99)00019-6</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 1999-10, Vol.17 (2), p.131-155
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_70827468
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Artificial Intelligence
Breast cancer
Breast cancer diagnosis
Breast Neoplasms - diagnosis
Breast Neoplasms - genetics
Computer applications
Databases, Factual
Diagnosis, Computer-Assisted - methods
Diagnostic systems
Evolutionary algorithms
Female
Fuzzy Logic
Fuzzy sets
Fuzzy systems
Genetic algorithms
Genome
Humans
Medicine
Models, Biological
Oncology
title A fuzzy-genetic approach to breast cancer diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy-genetic%20approach%20to%20breast%20cancer%20diagnosis&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Pe%C3%B1a-Reyes,%20Carlos%20Andr%C3%A9s&rft.date=1999-10-01&rft.volume=17&rft.issue=2&rft.spage=131&rft.epage=155&rft.pages=131-155&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/S0933-3657(99)00019-6&rft_dat=%3Cproquest_cross%3E70827468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21452393&rft_id=info:pmid/10518048&rft_els_id=S0933365799000196&rfr_iscdi=true