Theoretical and experimental intravascular gas embolism absorption dynamics

1  Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208; and 2  Department of Anesthesia and The Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Multifocal cerebrovascular gas embolism occurs frequently during ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 1999-10, Vol.87 (4), p.1287-1295
Hauptverfasser: Branger, Annette B, Eckmann, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1295
container_issue 4
container_start_page 1287
container_title Journal of applied physiology (1985)
container_volume 87
creator Branger, Annette B
Eckmann, David M
description 1  Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208; and 2  Department of Anesthesia and The Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Multifocal cerebrovascular gas embolism occurs frequently during cardiopulmonary bypass and is thought to cause postoperative neurological dysfunction in large numbers of patients. We developed a mathematical model to predict the absorption time of intravascular gas embolism, accounting for the bubble geometry observed in vivo. We modeled bubbles as cylinders with hemispherical end caps and solved the resulting governing gas transport equations numerically. We validated the model using data obtained from video-microscopy measurements of bubbles in the intact cremaster microcirculation of anesthetized male Wistar rats. The theoretical model with the use of in vivo geometry closely predicted actual absorption times for experimental intravascular gas embolisms and was more accurate than a model based on spherical shape. We computed absorption times for cerebrovascular gas embolism assuming a range of bubble geometries, initial volumes, and parameters relevant to brain blood flow. Results of the simulations demonstrated absorption time maxima and minima based on initial geometry, with several configurations taking as much as 50% longer to be absorbed than would a comparable spherical bubble. air embolism; diffusion; microcirculation; mathematical model
doi_str_mv 10.1152/jappl.1999.87.4.1287
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70827414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>46173352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-11d2b23a90320a44a24d9710f0d022442c87d982d4d6d47cc719082ff3d03b623</originalsourceid><addsrcrecordid>eNp1kM1u3CAURlHVqJmkfYOqsqoq6sYuF-MBllXUtFUjZTNdIwx4hhE2Lthp5u2LM6P-SVkhwfnudzkIvQZcATTkw16No69ACFFxVtEKCGfP0Co_kRLWGJ6jFWcNLlnD2Tm6SGmPMVDawAt0DrgBxhq6Qt82OxuinZxWvlCDKezDaKPr7TDlCzdMUd2rpGevYrFVqbB9G7xLfaHaFOI4uTAU5jCo3un0Ep11yif76nReou83nzbXX8rbu89frz_elpryeioBDGlJrQSuCVaUKkKNYIA7bDAhlBLNmRGcGGrWhjKtGQjMSdfVBtftmtSX6Oo4d4zhx2zTJHuXtPVeDTbMSbJMMwo0g2__A_dhjkPeTRJCQABpmgzRI6RjSCnaTo75_yoeJGC5mJaPpuViWnImqVxM59ib0-y57a35K3RUm4F3JyD7U76LatAu_eGEAFgv9e-P2M5tdz9dtHLcHZILPmwPS_M_lfRp9Gb2fmMfpiXzOyJH09W_AMxbqH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222191255</pqid></control><display><type>article</type><title>Theoretical and experimental intravascular gas embolism absorption dynamics</title><source>MEDLINE</source><source>American Physiological Society Paid</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Branger, Annette B ; Eckmann, David M</creator><creatorcontrib>Branger, Annette B ; Eckmann, David M</creatorcontrib><description>1  Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208; and 2  Department of Anesthesia and The Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Multifocal cerebrovascular gas embolism occurs frequently during cardiopulmonary bypass and is thought to cause postoperative neurological dysfunction in large numbers of patients. We developed a mathematical model to predict the absorption time of intravascular gas embolism, accounting for the bubble geometry observed in vivo. We modeled bubbles as cylinders with hemispherical end caps and solved the resulting governing gas transport equations numerically. We validated the model using data obtained from video-microscopy measurements of bubbles in the intact cremaster microcirculation of anesthetized male Wistar rats. The theoretical model with the use of in vivo geometry closely predicted actual absorption times for experimental intravascular gas embolisms and was more accurate than a model based on spherical shape. We computed absorption times for cerebrovascular gas embolism assuming a range of bubble geometries, initial volumes, and parameters relevant to brain blood flow. Results of the simulations demonstrated absorption time maxima and minima based on initial geometry, with several configurations taking as much as 50% longer to be absorbed than would a comparable spherical bubble. air embolism; diffusion; microcirculation; mathematical model</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/jappl.1999.87.4.1287</identifier><identifier>PMID: 10517754</identifier><identifier>CODEN: JAPHEV</identifier><language>eng</language><publisher>Bethesda, MD: Am Physiological Soc</publisher><subject>Absorption ; Anatomy &amp; physiology ; Animals ; Biological and medical sciences ; Blood vessels and receptors ; Computer Simulation ; Embolism, Air - metabolism ; Forecasting ; Fundamental and applied biological sciences. Psychology ; Male ; Mathematical models ; Microcirculation ; Models, Cardiovascular ; Muscle, Skeletal - blood supply ; Rats ; Rats, Wistar ; Respiratory system ; Time Factors ; Vertebrates: cardiovascular system</subject><ispartof>Journal of applied physiology (1985), 1999-10, Vol.87 (4), p.1287-1295</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Physiological Society Oct 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-11d2b23a90320a44a24d9710f0d022442c87d982d4d6d47cc719082ff3d03b623</citedby><cites>FETCH-LOGICAL-c483t-11d2b23a90320a44a24d9710f0d022442c87d982d4d6d47cc719082ff3d03b623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1991165$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10517754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Branger, Annette B</creatorcontrib><creatorcontrib>Eckmann, David M</creatorcontrib><title>Theoretical and experimental intravascular gas embolism absorption dynamics</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>1  Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208; and 2  Department of Anesthesia and The Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Multifocal cerebrovascular gas embolism occurs frequently during cardiopulmonary bypass and is thought to cause postoperative neurological dysfunction in large numbers of patients. We developed a mathematical model to predict the absorption time of intravascular gas embolism, accounting for the bubble geometry observed in vivo. We modeled bubbles as cylinders with hemispherical end caps and solved the resulting governing gas transport equations numerically. We validated the model using data obtained from video-microscopy measurements of bubbles in the intact cremaster microcirculation of anesthetized male Wistar rats. The theoretical model with the use of in vivo geometry closely predicted actual absorption times for experimental intravascular gas embolisms and was more accurate than a model based on spherical shape. We computed absorption times for cerebrovascular gas embolism assuming a range of bubble geometries, initial volumes, and parameters relevant to brain blood flow. Results of the simulations demonstrated absorption time maxima and minima based on initial geometry, with several configurations taking as much as 50% longer to be absorbed than would a comparable spherical bubble. air embolism; diffusion; microcirculation; mathematical model</description><subject>Absorption</subject><subject>Anatomy &amp; physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood vessels and receptors</subject><subject>Computer Simulation</subject><subject>Embolism, Air - metabolism</subject><subject>Forecasting</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Microcirculation</subject><subject>Models, Cardiovascular</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Respiratory system</subject><subject>Time Factors</subject><subject>Vertebrates: cardiovascular system</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1u3CAURlHVqJmkfYOqsqoq6sYuF-MBllXUtFUjZTNdIwx4hhE2Lthp5u2LM6P-SVkhwfnudzkIvQZcATTkw16No69ACFFxVtEKCGfP0Co_kRLWGJ6jFWcNLlnD2Tm6SGmPMVDawAt0DrgBxhq6Qt82OxuinZxWvlCDKezDaKPr7TDlCzdMUd2rpGevYrFVqbB9G7xLfaHaFOI4uTAU5jCo3un0Ep11yif76nReou83nzbXX8rbu89frz_elpryeioBDGlJrQSuCVaUKkKNYIA7bDAhlBLNmRGcGGrWhjKtGQjMSdfVBtftmtSX6Oo4d4zhx2zTJHuXtPVeDTbMSbJMMwo0g2__A_dhjkPeTRJCQABpmgzRI6RjSCnaTo75_yoeJGC5mJaPpuViWnImqVxM59ib0-y57a35K3RUm4F3JyD7U76LatAu_eGEAFgv9e-P2M5tdz9dtHLcHZILPmwPS_M_lfRp9Gb2fmMfpiXzOyJH09W_AMxbqH0</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Branger, Annette B</creator><creator>Eckmann, David M</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19991001</creationdate><title>Theoretical and experimental intravascular gas embolism absorption dynamics</title><author>Branger, Annette B ; Eckmann, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-11d2b23a90320a44a24d9710f0d022442c87d982d4d6d47cc719082ff3d03b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Absorption</topic><topic>Anatomy &amp; physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood vessels and receptors</topic><topic>Computer Simulation</topic><topic>Embolism, Air - metabolism</topic><topic>Forecasting</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Microcirculation</topic><topic>Models, Cardiovascular</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Respiratory system</topic><topic>Time Factors</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Branger, Annette B</creatorcontrib><creatorcontrib>Eckmann, David M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Branger, Annette B</au><au>Eckmann, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and experimental intravascular gas embolism absorption dynamics</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>87</volume><issue>4</issue><spage>1287</spage><epage>1295</epage><pages>1287-1295</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><coden>JAPHEV</coden><abstract>1  Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208; and 2  Department of Anesthesia and The Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Multifocal cerebrovascular gas embolism occurs frequently during cardiopulmonary bypass and is thought to cause postoperative neurological dysfunction in large numbers of patients. We developed a mathematical model to predict the absorption time of intravascular gas embolism, accounting for the bubble geometry observed in vivo. We modeled bubbles as cylinders with hemispherical end caps and solved the resulting governing gas transport equations numerically. We validated the model using data obtained from video-microscopy measurements of bubbles in the intact cremaster microcirculation of anesthetized male Wistar rats. The theoretical model with the use of in vivo geometry closely predicted actual absorption times for experimental intravascular gas embolisms and was more accurate than a model based on spherical shape. We computed absorption times for cerebrovascular gas embolism assuming a range of bubble geometries, initial volumes, and parameters relevant to brain blood flow. Results of the simulations demonstrated absorption time maxima and minima based on initial geometry, with several configurations taking as much as 50% longer to be absorbed than would a comparable spherical bubble. air embolism; diffusion; microcirculation; mathematical model</abstract><cop>Bethesda, MD</cop><pub>Am Physiological Soc</pub><pmid>10517754</pmid><doi>10.1152/jappl.1999.87.4.1287</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 1999-10, Vol.87 (4), p.1287-1295
issn 8750-7587
1522-1601
language eng
recordid cdi_proquest_miscellaneous_70827414
source MEDLINE; American Physiological Society Paid; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Absorption
Anatomy & physiology
Animals
Biological and medical sciences
Blood vessels and receptors
Computer Simulation
Embolism, Air - metabolism
Forecasting
Fundamental and applied biological sciences. Psychology
Male
Mathematical models
Microcirculation
Models, Cardiovascular
Muscle, Skeletal - blood supply
Rats
Rats, Wistar
Respiratory system
Time Factors
Vertebrates: cardiovascular system
title Theoretical and experimental intravascular gas embolism absorption dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20experimental%20intravascular%20gas%20embolism%20absorption%20dynamics&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Branger,%20Annette%20B&rft.date=1999-10-01&rft.volume=87&rft.issue=4&rft.spage=1287&rft.epage=1295&rft.pages=1287-1295&rft.issn=8750-7587&rft.eissn=1522-1601&rft.coden=JAPHEV&rft_id=info:doi/10.1152/jappl.1999.87.4.1287&rft_dat=%3Cproquest_pubme%3E46173352%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222191255&rft_id=info:pmid/10517754&rfr_iscdi=true