Theoretical and experimental intravascular gas embolism absorption dynamics
1 Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208; and 2 Department of Anesthesia and The Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Multifocal cerebrovascular gas embolism occurs frequently during ca...
Gespeichert in:
Veröffentlicht in: | Journal of applied physiology (1985) 1999-10, Vol.87 (4), p.1287-1295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1295 |
---|---|
container_issue | 4 |
container_start_page | 1287 |
container_title | Journal of applied physiology (1985) |
container_volume | 87 |
creator | Branger, Annette B Eckmann, David M |
description | 1 Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208; and
2 Department of Anesthesia and The
Institute for Medicine and Engineering, University of Pennsylvania,
Philadelphia, Pennsylvania 19104
Multifocal cerebrovascular gas
embolism occurs frequently during cardiopulmonary bypass and is thought
to cause postoperative neurological dysfunction in large numbers of
patients. We developed a mathematical model to predict the
absorption time of intravascular gas embolism, accounting for the
bubble geometry observed in vivo. We modeled bubbles as cylinders with
hemispherical end caps and solved the resulting governing gas transport
equations numerically. We validated the model using data obtained from
video-microscopy measurements of bubbles in the intact cremaster
microcirculation of anesthetized male Wistar rats. The theoretical
model with the use of in vivo geometry closely predicted actual
absorption times for experimental intravascular gas embolisms and was
more accurate than a model based on spherical shape. We computed
absorption times for cerebrovascular gas embolism assuming a range of
bubble geometries, initial volumes, and parameters relevant to brain blood flow. Results of the simulations demonstrated absorption time
maxima and minima based on initial geometry, with several configurations taking as much as 50% longer to be absorbed than would
a comparable spherical bubble.
air embolism; diffusion; microcirculation; mathematical model |
doi_str_mv | 10.1152/jappl.1999.87.4.1287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70827414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>46173352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-11d2b23a90320a44a24d9710f0d022442c87d982d4d6d47cc719082ff3d03b623</originalsourceid><addsrcrecordid>eNp1kM1u3CAURlHVqJmkfYOqsqoq6sYuF-MBllXUtFUjZTNdIwx4hhE2Lthp5u2LM6P-SVkhwfnudzkIvQZcATTkw16No69ACFFxVtEKCGfP0Co_kRLWGJ6jFWcNLlnD2Tm6SGmPMVDawAt0DrgBxhq6Qt82OxuinZxWvlCDKezDaKPr7TDlCzdMUd2rpGevYrFVqbB9G7xLfaHaFOI4uTAU5jCo3un0Ep11yif76nReou83nzbXX8rbu89frz_elpryeioBDGlJrQSuCVaUKkKNYIA7bDAhlBLNmRGcGGrWhjKtGQjMSdfVBtftmtSX6Oo4d4zhx2zTJHuXtPVeDTbMSbJMMwo0g2__A_dhjkPeTRJCQABpmgzRI6RjSCnaTo75_yoeJGC5mJaPpuViWnImqVxM59ib0-y57a35K3RUm4F3JyD7U76LatAu_eGEAFgv9e-P2M5tdz9dtHLcHZILPmwPS_M_lfRp9Gb2fmMfpiXzOyJH09W_AMxbqH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222191255</pqid></control><display><type>article</type><title>Theoretical and experimental intravascular gas embolism absorption dynamics</title><source>MEDLINE</source><source>American Physiological Society Paid</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Branger, Annette B ; Eckmann, David M</creator><creatorcontrib>Branger, Annette B ; Eckmann, David M</creatorcontrib><description>1 Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208; and
2 Department of Anesthesia and The
Institute for Medicine and Engineering, University of Pennsylvania,
Philadelphia, Pennsylvania 19104
Multifocal cerebrovascular gas
embolism occurs frequently during cardiopulmonary bypass and is thought
to cause postoperative neurological dysfunction in large numbers of
patients. We developed a mathematical model to predict the
absorption time of intravascular gas embolism, accounting for the
bubble geometry observed in vivo. We modeled bubbles as cylinders with
hemispherical end caps and solved the resulting governing gas transport
equations numerically. We validated the model using data obtained from
video-microscopy measurements of bubbles in the intact cremaster
microcirculation of anesthetized male Wistar rats. The theoretical
model with the use of in vivo geometry closely predicted actual
absorption times for experimental intravascular gas embolisms and was
more accurate than a model based on spherical shape. We computed
absorption times for cerebrovascular gas embolism assuming a range of
bubble geometries, initial volumes, and parameters relevant to brain blood flow. Results of the simulations demonstrated absorption time
maxima and minima based on initial geometry, with several configurations taking as much as 50% longer to be absorbed than would
a comparable spherical bubble.
air embolism; diffusion; microcirculation; mathematical model</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/jappl.1999.87.4.1287</identifier><identifier>PMID: 10517754</identifier><identifier>CODEN: JAPHEV</identifier><language>eng</language><publisher>Bethesda, MD: Am Physiological Soc</publisher><subject>Absorption ; Anatomy & physiology ; Animals ; Biological and medical sciences ; Blood vessels and receptors ; Computer Simulation ; Embolism, Air - metabolism ; Forecasting ; Fundamental and applied biological sciences. Psychology ; Male ; Mathematical models ; Microcirculation ; Models, Cardiovascular ; Muscle, Skeletal - blood supply ; Rats ; Rats, Wistar ; Respiratory system ; Time Factors ; Vertebrates: cardiovascular system</subject><ispartof>Journal of applied physiology (1985), 1999-10, Vol.87 (4), p.1287-1295</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Physiological Society Oct 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-11d2b23a90320a44a24d9710f0d022442c87d982d4d6d47cc719082ff3d03b623</citedby><cites>FETCH-LOGICAL-c483t-11d2b23a90320a44a24d9710f0d022442c87d982d4d6d47cc719082ff3d03b623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1991165$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10517754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Branger, Annette B</creatorcontrib><creatorcontrib>Eckmann, David M</creatorcontrib><title>Theoretical and experimental intravascular gas embolism absorption dynamics</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>1 Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208; and
2 Department of Anesthesia and The
Institute for Medicine and Engineering, University of Pennsylvania,
Philadelphia, Pennsylvania 19104
Multifocal cerebrovascular gas
embolism occurs frequently during cardiopulmonary bypass and is thought
to cause postoperative neurological dysfunction in large numbers of
patients. We developed a mathematical model to predict the
absorption time of intravascular gas embolism, accounting for the
bubble geometry observed in vivo. We modeled bubbles as cylinders with
hemispherical end caps and solved the resulting governing gas transport
equations numerically. We validated the model using data obtained from
video-microscopy measurements of bubbles in the intact cremaster
microcirculation of anesthetized male Wistar rats. The theoretical
model with the use of in vivo geometry closely predicted actual
absorption times for experimental intravascular gas embolisms and was
more accurate than a model based on spherical shape. We computed
absorption times for cerebrovascular gas embolism assuming a range of
bubble geometries, initial volumes, and parameters relevant to brain blood flow. Results of the simulations demonstrated absorption time
maxima and minima based on initial geometry, with several configurations taking as much as 50% longer to be absorbed than would
a comparable spherical bubble.
air embolism; diffusion; microcirculation; mathematical model</description><subject>Absorption</subject><subject>Anatomy & physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood vessels and receptors</subject><subject>Computer Simulation</subject><subject>Embolism, Air - metabolism</subject><subject>Forecasting</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Microcirculation</subject><subject>Models, Cardiovascular</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Respiratory system</subject><subject>Time Factors</subject><subject>Vertebrates: cardiovascular system</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1u3CAURlHVqJmkfYOqsqoq6sYuF-MBllXUtFUjZTNdIwx4hhE2Lthp5u2LM6P-SVkhwfnudzkIvQZcATTkw16No69ACFFxVtEKCGfP0Co_kRLWGJ6jFWcNLlnD2Tm6SGmPMVDawAt0DrgBxhq6Qt82OxuinZxWvlCDKezDaKPr7TDlCzdMUd2rpGevYrFVqbB9G7xLfaHaFOI4uTAU5jCo3un0Ep11yif76nReou83nzbXX8rbu89frz_elpryeioBDGlJrQSuCVaUKkKNYIA7bDAhlBLNmRGcGGrWhjKtGQjMSdfVBtftmtSX6Oo4d4zhx2zTJHuXtPVeDTbMSbJMMwo0g2__A_dhjkPeTRJCQABpmgzRI6RjSCnaTo75_yoeJGC5mJaPpuViWnImqVxM59ib0-y57a35K3RUm4F3JyD7U76LatAu_eGEAFgv9e-P2M5tdz9dtHLcHZILPmwPS_M_lfRp9Gb2fmMfpiXzOyJH09W_AMxbqH0</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Branger, Annette B</creator><creator>Eckmann, David M</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19991001</creationdate><title>Theoretical and experimental intravascular gas embolism absorption dynamics</title><author>Branger, Annette B ; Eckmann, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-11d2b23a90320a44a24d9710f0d022442c87d982d4d6d47cc719082ff3d03b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Absorption</topic><topic>Anatomy & physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood vessels and receptors</topic><topic>Computer Simulation</topic><topic>Embolism, Air - metabolism</topic><topic>Forecasting</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Microcirculation</topic><topic>Models, Cardiovascular</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Respiratory system</topic><topic>Time Factors</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Branger, Annette B</creatorcontrib><creatorcontrib>Eckmann, David M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Branger, Annette B</au><au>Eckmann, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and experimental intravascular gas embolism absorption dynamics</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>87</volume><issue>4</issue><spage>1287</spage><epage>1295</epage><pages>1287-1295</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><coden>JAPHEV</coden><abstract>1 Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208; and
2 Department of Anesthesia and The
Institute for Medicine and Engineering, University of Pennsylvania,
Philadelphia, Pennsylvania 19104
Multifocal cerebrovascular gas
embolism occurs frequently during cardiopulmonary bypass and is thought
to cause postoperative neurological dysfunction in large numbers of
patients. We developed a mathematical model to predict the
absorption time of intravascular gas embolism, accounting for the
bubble geometry observed in vivo. We modeled bubbles as cylinders with
hemispherical end caps and solved the resulting governing gas transport
equations numerically. We validated the model using data obtained from
video-microscopy measurements of bubbles in the intact cremaster
microcirculation of anesthetized male Wistar rats. The theoretical
model with the use of in vivo geometry closely predicted actual
absorption times for experimental intravascular gas embolisms and was
more accurate than a model based on spherical shape. We computed
absorption times for cerebrovascular gas embolism assuming a range of
bubble geometries, initial volumes, and parameters relevant to brain blood flow. Results of the simulations demonstrated absorption time
maxima and minima based on initial geometry, with several configurations taking as much as 50% longer to be absorbed than would
a comparable spherical bubble.
air embolism; diffusion; microcirculation; mathematical model</abstract><cop>Bethesda, MD</cop><pub>Am Physiological Soc</pub><pmid>10517754</pmid><doi>10.1152/jappl.1999.87.4.1287</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8750-7587 |
ispartof | Journal of applied physiology (1985), 1999-10, Vol.87 (4), p.1287-1295 |
issn | 8750-7587 1522-1601 |
language | eng |
recordid | cdi_proquest_miscellaneous_70827414 |
source | MEDLINE; American Physiological Society Paid; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Absorption Anatomy & physiology Animals Biological and medical sciences Blood vessels and receptors Computer Simulation Embolism, Air - metabolism Forecasting Fundamental and applied biological sciences. Psychology Male Mathematical models Microcirculation Models, Cardiovascular Muscle, Skeletal - blood supply Rats Rats, Wistar Respiratory system Time Factors Vertebrates: cardiovascular system |
title | Theoretical and experimental intravascular gas embolism absorption dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20experimental%20intravascular%20gas%20embolism%20absorption%20dynamics&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Branger,%20Annette%20B&rft.date=1999-10-01&rft.volume=87&rft.issue=4&rft.spage=1287&rft.epage=1295&rft.pages=1287-1295&rft.issn=8750-7587&rft.eissn=1522-1601&rft.coden=JAPHEV&rft_id=info:doi/10.1152/jappl.1999.87.4.1287&rft_dat=%3Cproquest_pubme%3E46173352%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222191255&rft_id=info:pmid/10517754&rfr_iscdi=true |