Epigallocatechin gallate protects U937 cells against nitric oxide-induced cell cycle arrest and apoptosis
Ingesting phenolic phytochemicals in many plant products may promote health, but the effects of phenolic phytochemicals at the cellular level have not been fully examined. Thus, it was determined if the tea phenolic phytochemical, epigallocatechin gallate (EGCG), protects U937 human pro‐monocytic ce...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2001, Vol.81 (4), p.647-658 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | 4 |
container_start_page | 647 |
container_title | Journal of cellular biochemistry |
container_volume | 81 |
creator | Kelly, Melissa R. Geigerman, Cissy M. Loo, George |
description | Ingesting phenolic phytochemicals in many plant products may promote health, but the effects of phenolic phytochemicals at the cellular level have not been fully examined. Thus, it was determined if the tea phenolic phytochemical, epigallocatechin gallate (EGCG), protects U937 human pro‐monocytic cells against the nitrogen free radical, nitric oxide (•NO). Cells were incubated for 4–6 h with 500 μM S‐nitrosoglutathione (GSNO), which generates •NO, but this did not induce single‐strand breaks in DNA. Nevertheless, 82 ± 4% of GSNO‐treated cells, compared to only 39 ± 1% of untreated cells, were arrested in the G1‐phase of the cell cycle. However, dosing the GSNO‐treated cells with 9, 14, or 18 μg/ml of EGCG resulted in only 74 ± 8%, 66 ± 1%, and 43 ± 3% of the cells, respectively, in the G1‐phase. Exposing cells to GSNO also resulted in the emergence of a sub‐G1 apoptotic cell population numbering 14 ± 3%, but only 5 ± 2%, 5 ± 1%, and 2 ± 0% upon dosing of the GSNO‐treated cells with 9, 14, and 18 μg/ml of EGCG, respectively. Furthermore, exposing cells to GSNO resulted in greater cell surface binding of annexin V‐FITC, but binding was 41–89% lower in GSNO‐treated cells dosed with EGCG. Collectively, these data suggest that •NO or downstream products induced cell cycle arrest and apoptosis that was not due to single‐strand breaks in DNA, and that EGCG scavenged cytotoxic •NO or downstream products, thus reducing the number of cells in a state of cell cycle arrest or apoptosis. J. Cell. Biochem. 81: 647–658, 2001. © 2001 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jcb.1097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70821667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70821667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3897-cf2b5f4c2cf713b18153a32e06100e747667f071053a907f104426bef3d53d713</originalsourceid><addsrcrecordid>eNp1kMlOwzAURS0EoqUg8QXIK8Qm4CGJmyWUUkBlEGqFxMZyHLu4pEmwE9H-PQ6NYMXqDTrv6r4LwDFG5xghcrGUqW8StgP6bQnCOAx3QR8xigJCMemBA-eWCKEkoWQf9DCmJIlx0gdmXJmFyPNSilrJd1PAdvI9rGzpN7WD84QyKFWeOygWwhSuhoWprZGwXJtMBabIGqmyHwTKjcwVFNYqj4kig6Iqq7p0xh2CPS1yp466OgDzm_FsdBtMnyZ3o8tpIOnQW5eapJEOJZGaYZriIY6ooESh2H-qWMjimGnEMPLrBDGNURiSOFWaZhHN_MkAnG51_QOfjbfBV8a13kShysZxhoYEexEPnm1BaUvnrNK8smYl7IZjxNtYuY-Vt3l69KTTbNKVyv7ALkcPBFvgy-Rq868Qvx9ddYIdb1yt1r-8sB_cO2MRf32c8Ci6nr1NXx74M_0G0vKP5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70821667</pqid></control><display><type>article</type><title>Epigallocatechin gallate protects U937 cells against nitric oxide-induced cell cycle arrest and apoptosis</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kelly, Melissa R. ; Geigerman, Cissy M. ; Loo, George</creator><creatorcontrib>Kelly, Melissa R. ; Geigerman, Cissy M. ; Loo, George</creatorcontrib><description>Ingesting phenolic phytochemicals in many plant products may promote health, but the effects of phenolic phytochemicals at the cellular level have not been fully examined. Thus, it was determined if the tea phenolic phytochemical, epigallocatechin gallate (EGCG), protects U937 human pro‐monocytic cells against the nitrogen free radical, nitric oxide (•NO). Cells were incubated for 4–6 h with 500 μM S‐nitrosoglutathione (GSNO), which generates •NO, but this did not induce single‐strand breaks in DNA. Nevertheless, 82 ± 4% of GSNO‐treated cells, compared to only 39 ± 1% of untreated cells, were arrested in the G1‐phase of the cell cycle. However, dosing the GSNO‐treated cells with 9, 14, or 18 μg/ml of EGCG resulted in only 74 ± 8%, 66 ± 1%, and 43 ± 3% of the cells, respectively, in the G1‐phase. Exposing cells to GSNO also resulted in the emergence of a sub‐G1 apoptotic cell population numbering 14 ± 3%, but only 5 ± 2%, 5 ± 1%, and 2 ± 0% upon dosing of the GSNO‐treated cells with 9, 14, and 18 μg/ml of EGCG, respectively. Furthermore, exposing cells to GSNO resulted in greater cell surface binding of annexin V‐FITC, but binding was 41–89% lower in GSNO‐treated cells dosed with EGCG. Collectively, these data suggest that •NO or downstream products induced cell cycle arrest and apoptosis that was not due to single‐strand breaks in DNA, and that EGCG scavenged cytotoxic •NO or downstream products, thus reducing the number of cells in a state of cell cycle arrest or apoptosis. J. Cell. Biochem. 81: 647–658, 2001. © 2001 Wiley‐Liss, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.1097</identifier><identifier>PMID: 11329619</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>apoptosis ; Apoptosis - drug effects ; Apoptosis - physiology ; Biomarkers ; Catechin - analogs & derivatives ; Catechin - chemistry ; Catechin - pharmacology ; cell cycle ; Cell Cycle - drug effects ; Cell Cycle - physiology ; DNA - drug effects ; DNA - metabolism ; DNA Fragmentation - physiology ; epigallocatechin gallate ; Free Radical Scavengers - chemistry ; Free Radical Scavengers - metabolism ; G2 Phase - drug effects ; Humans ; Mitosis - drug effects ; nitric oxide ; Nitric Oxide - chemistry ; Nitric Oxide - metabolism ; Reactive Oxygen Species - metabolism ; U937 Cells</subject><ispartof>Journal of cellular biochemistry, 2001, Vol.81 (4), p.647-658</ispartof><rights>Copyright © 2001 Wiley‐Liss, Inc.</rights><rights>Copyright 2001 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3897-cf2b5f4c2cf713b18153a32e06100e747667f071053a907f104426bef3d53d713</citedby><cites>FETCH-LOGICAL-c3897-cf2b5f4c2cf713b18153a32e06100e747667f071053a907f104426bef3d53d713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.1097$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.1097$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4022,27922,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11329619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, Melissa R.</creatorcontrib><creatorcontrib>Geigerman, Cissy M.</creatorcontrib><creatorcontrib>Loo, George</creatorcontrib><title>Epigallocatechin gallate protects U937 cells against nitric oxide-induced cell cycle arrest and apoptosis</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Ingesting phenolic phytochemicals in many plant products may promote health, but the effects of phenolic phytochemicals at the cellular level have not been fully examined. Thus, it was determined if the tea phenolic phytochemical, epigallocatechin gallate (EGCG), protects U937 human pro‐monocytic cells against the nitrogen free radical, nitric oxide (•NO). Cells were incubated for 4–6 h with 500 μM S‐nitrosoglutathione (GSNO), which generates •NO, but this did not induce single‐strand breaks in DNA. Nevertheless, 82 ± 4% of GSNO‐treated cells, compared to only 39 ± 1% of untreated cells, were arrested in the G1‐phase of the cell cycle. However, dosing the GSNO‐treated cells with 9, 14, or 18 μg/ml of EGCG resulted in only 74 ± 8%, 66 ± 1%, and 43 ± 3% of the cells, respectively, in the G1‐phase. Exposing cells to GSNO also resulted in the emergence of a sub‐G1 apoptotic cell population numbering 14 ± 3%, but only 5 ± 2%, 5 ± 1%, and 2 ± 0% upon dosing of the GSNO‐treated cells with 9, 14, and 18 μg/ml of EGCG, respectively. Furthermore, exposing cells to GSNO resulted in greater cell surface binding of annexin V‐FITC, but binding was 41–89% lower in GSNO‐treated cells dosed with EGCG. Collectively, these data suggest that •NO or downstream products induced cell cycle arrest and apoptosis that was not due to single‐strand breaks in DNA, and that EGCG scavenged cytotoxic •NO or downstream products, thus reducing the number of cells in a state of cell cycle arrest or apoptosis. J. Cell. Biochem. 81: 647–658, 2001. © 2001 Wiley‐Liss, Inc.</description><subject>apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - physiology</subject><subject>Biomarkers</subject><subject>Catechin - analogs & derivatives</subject><subject>Catechin - chemistry</subject><subject>Catechin - pharmacology</subject><subject>cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Cycle - physiology</subject><subject>DNA - drug effects</subject><subject>DNA - metabolism</subject><subject>DNA Fragmentation - physiology</subject><subject>epigallocatechin gallate</subject><subject>Free Radical Scavengers - chemistry</subject><subject>Free Radical Scavengers - metabolism</subject><subject>G2 Phase - drug effects</subject><subject>Humans</subject><subject>Mitosis - drug effects</subject><subject>nitric oxide</subject><subject>Nitric Oxide - chemistry</subject><subject>Nitric Oxide - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>U937 Cells</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMlOwzAURS0EoqUg8QXIK8Qm4CGJmyWUUkBlEGqFxMZyHLu4pEmwE9H-PQ6NYMXqDTrv6r4LwDFG5xghcrGUqW8StgP6bQnCOAx3QR8xigJCMemBA-eWCKEkoWQf9DCmJIlx0gdmXJmFyPNSilrJd1PAdvI9rGzpN7WD84QyKFWeOygWwhSuhoWprZGwXJtMBabIGqmyHwTKjcwVFNYqj4kig6Iqq7p0xh2CPS1yp466OgDzm_FsdBtMnyZ3o8tpIOnQW5eapJEOJZGaYZriIY6ooESh2H-qWMjimGnEMPLrBDGNURiSOFWaZhHN_MkAnG51_QOfjbfBV8a13kShysZxhoYEexEPnm1BaUvnrNK8smYl7IZjxNtYuY-Vt3l69KTTbNKVyv7ALkcPBFvgy-Rq868Qvx9ddYIdb1yt1r-8sB_cO2MRf32c8Ci6nr1NXx74M_0G0vKP5Q</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Kelly, Melissa R.</creator><creator>Geigerman, Cissy M.</creator><creator>Loo, George</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2001</creationdate><title>Epigallocatechin gallate protects U937 cells against nitric oxide-induced cell cycle arrest and apoptosis</title><author>Kelly, Melissa R. ; Geigerman, Cissy M. ; Loo, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3897-cf2b5f4c2cf713b18153a32e06100e747667f071053a907f104426bef3d53d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - physiology</topic><topic>Biomarkers</topic><topic>Catechin - analogs & derivatives</topic><topic>Catechin - chemistry</topic><topic>Catechin - pharmacology</topic><topic>cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Cycle - physiology</topic><topic>DNA - drug effects</topic><topic>DNA - metabolism</topic><topic>DNA Fragmentation - physiology</topic><topic>epigallocatechin gallate</topic><topic>Free Radical Scavengers - chemistry</topic><topic>Free Radical Scavengers - metabolism</topic><topic>G2 Phase - drug effects</topic><topic>Humans</topic><topic>Mitosis - drug effects</topic><topic>nitric oxide</topic><topic>Nitric Oxide - chemistry</topic><topic>Nitric Oxide - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>U937 Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Melissa R.</creatorcontrib><creatorcontrib>Geigerman, Cissy M.</creatorcontrib><creatorcontrib>Loo, George</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Melissa R.</au><au>Geigerman, Cissy M.</au><au>Loo, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigallocatechin gallate protects U937 cells against nitric oxide-induced cell cycle arrest and apoptosis</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2001</date><risdate>2001</risdate><volume>81</volume><issue>4</issue><spage>647</spage><epage>658</epage><pages>647-658</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Ingesting phenolic phytochemicals in many plant products may promote health, but the effects of phenolic phytochemicals at the cellular level have not been fully examined. Thus, it was determined if the tea phenolic phytochemical, epigallocatechin gallate (EGCG), protects U937 human pro‐monocytic cells against the nitrogen free radical, nitric oxide (•NO). Cells were incubated for 4–6 h with 500 μM S‐nitrosoglutathione (GSNO), which generates •NO, but this did not induce single‐strand breaks in DNA. Nevertheless, 82 ± 4% of GSNO‐treated cells, compared to only 39 ± 1% of untreated cells, were arrested in the G1‐phase of the cell cycle. However, dosing the GSNO‐treated cells with 9, 14, or 18 μg/ml of EGCG resulted in only 74 ± 8%, 66 ± 1%, and 43 ± 3% of the cells, respectively, in the G1‐phase. Exposing cells to GSNO also resulted in the emergence of a sub‐G1 apoptotic cell population numbering 14 ± 3%, but only 5 ± 2%, 5 ± 1%, and 2 ± 0% upon dosing of the GSNO‐treated cells with 9, 14, and 18 μg/ml of EGCG, respectively. Furthermore, exposing cells to GSNO resulted in greater cell surface binding of annexin V‐FITC, but binding was 41–89% lower in GSNO‐treated cells dosed with EGCG. Collectively, these data suggest that •NO or downstream products induced cell cycle arrest and apoptosis that was not due to single‐strand breaks in DNA, and that EGCG scavenged cytotoxic •NO or downstream products, thus reducing the number of cells in a state of cell cycle arrest or apoptosis. J. Cell. Biochem. 81: 647–658, 2001. © 2001 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>11329619</pmid><doi>10.1002/jcb.1097</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2001, Vol.81 (4), p.647-658 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_proquest_miscellaneous_70821667 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | apoptosis Apoptosis - drug effects Apoptosis - physiology Biomarkers Catechin - analogs & derivatives Catechin - chemistry Catechin - pharmacology cell cycle Cell Cycle - drug effects Cell Cycle - physiology DNA - drug effects DNA - metabolism DNA Fragmentation - physiology epigallocatechin gallate Free Radical Scavengers - chemistry Free Radical Scavengers - metabolism G2 Phase - drug effects Humans Mitosis - drug effects nitric oxide Nitric Oxide - chemistry Nitric Oxide - metabolism Reactive Oxygen Species - metabolism U937 Cells |
title | Epigallocatechin gallate protects U937 cells against nitric oxide-induced cell cycle arrest and apoptosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigallocatechin%20gallate%20protects%20U937%20cells%20against%20nitric%20oxide-induced%20cell%20cycle%20arrest%20and%20apoptosis&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Kelly,%20Melissa%20R.&rft.date=2001&rft.volume=81&rft.issue=4&rft.spage=647&rft.epage=658&rft.pages=647-658&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.1097&rft_dat=%3Cproquest_cross%3E70821667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70821667&rft_id=info:pmid/11329619&rfr_iscdi=true |