Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis

Rat mesenchymal stem cells (rMSCs) represent a small portion of the cells in the stromal compartment of bone marrow and have the potential to differentiate into bone, cartilage, fat, and fibrous tissue. These mesenchymal progenitor cells were maintained as primary isolates and as subcultured cells i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2001-06, Vol.187 (3), p.345-355
Hauptverfasser: Lennon, Donald P., Edmison, John M., Caplan, Arnold I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 3
container_start_page 345
container_title Journal of cellular physiology
container_volume 187
creator Lennon, Donald P.
Edmison, John M.
Caplan, Arnold I.
description Rat mesenchymal stem cells (rMSCs) represent a small portion of the cells in the stromal compartment of bone marrow and have the potential to differentiate into bone, cartilage, fat, and fibrous tissue. These mesenchymal progenitor cells were maintained as primary isolates and as subcultured cells in separate closed modular incubator chambers purged with either 95% air and 5% CO2 (20% or control oxygen) or 5% oxygen, 5% CO2, and 90% nitrogen (5% or low oxygen). At first passage, some cells from each oxygen condition were loaded into porous ceramic vehicles and implanted into syngeneic host animals in an in vivo assay for osteochondrogenesis. The remaining cells were continued in vitro in the same oxygen tension as for primary culture or were switched to the alternate condition. The first passage cells were examined for in vitro osteogenesis with assays involving the quantification of alkaline phosphatase activity and calcium and DNA content as well as by von Kossa staining to detect mineralization. Cultures maintained in low oxygen had a greater number of colonies as primary isolates and proliferated more rapidly throughout their time in vitro, as indicated by hemacytometer counts at the end of primary culture and increased DNA values for first passage cells. Moreover, rMSCs cultivated in 5% oxygen produced more bone than cells cultured in 20% oxygen when harvested and loaded into porous ceramic cubes and implanted into syngeneic host animals. Finally, markers for osteogenesis, including alkaline phosphatase activity, calcium content, and von Kossa staining, were elevated in cultures which had been in low oxygen throughout their cultivation time. Expression of these markers was usually increased above basal levels when cells were switched from control to low oxygen at first passage and decreased for cells switched from low to control oxygen. We conclude that rMSCs in culture function optimally in an atmosphere of reduced oxygen that more closely approximates documented in vivo oxygen tension. © 2001 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jcp.1081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70807456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70807456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4211-6678a83c4436392e5c7a896db76363a63ecf33c2f99b08551f74f9a4cd8e74ad3</originalsourceid><addsrcrecordid>eNp1kMFuFCEYgInR2G018QkMJ9PLKAwMDN50025tmtoYTY-EhR9LnRlWmNl2n6CvLZud6MkT8PPxJXwIvaHkPSWk_nBvN2XT0mdoQYmSFRdN_RwtyhWtVMPpETrO-Z4QohRjL9ERpYwq2bQL9LScujFszRjigKPHyYy4NynFh8pBCltwuIcMg73b9abDeYQeW-i6jMOAE7jJFiI-7n7CgEcYctF8xGfegx0zLspCbcOYIjaDOxy2EceiifYuDi7F8hByyK_QC2-6DK_n9QT9OD_7vryorr6uviw_XVWW15RWQsjWtMxyzgRTNTRWmlYJt5aiDIxgYD1jtvZKrUnbNNRL7pXh1rUguXHsBL07eDcp_p4gj7oPef8hM0CcspakJZI3ooCnB9CmmHMCrzcplDI7TYneR9clut5HL-jb2Tmte3D_wLlyAaoD8BA62P1XpC-XN7Nw5kMJ9fiXN-mXFpLJRt9er3T7bXXx-fr2Up-zPzlmnK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70807456</pqid></control><display><type>article</type><title>Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lennon, Donald P. ; Edmison, John M. ; Caplan, Arnold I.</creator><creatorcontrib>Lennon, Donald P. ; Edmison, John M. ; Caplan, Arnold I.</creatorcontrib><description>Rat mesenchymal stem cells (rMSCs) represent a small portion of the cells in the stromal compartment of bone marrow and have the potential to differentiate into bone, cartilage, fat, and fibrous tissue. These mesenchymal progenitor cells were maintained as primary isolates and as subcultured cells in separate closed modular incubator chambers purged with either 95% air and 5% CO2 (20% or control oxygen) or 5% oxygen, 5% CO2, and 90% nitrogen (5% or low oxygen). At first passage, some cells from each oxygen condition were loaded into porous ceramic vehicles and implanted into syngeneic host animals in an in vivo assay for osteochondrogenesis. The remaining cells were continued in vitro in the same oxygen tension as for primary culture or were switched to the alternate condition. The first passage cells were examined for in vitro osteogenesis with assays involving the quantification of alkaline phosphatase activity and calcium and DNA content as well as by von Kossa staining to detect mineralization. Cultures maintained in low oxygen had a greater number of colonies as primary isolates and proliferated more rapidly throughout their time in vitro, as indicated by hemacytometer counts at the end of primary culture and increased DNA values for first passage cells. Moreover, rMSCs cultivated in 5% oxygen produced more bone than cells cultured in 20% oxygen when harvested and loaded into porous ceramic cubes and implanted into syngeneic host animals. Finally, markers for osteogenesis, including alkaline phosphatase activity, calcium content, and von Kossa staining, were elevated in cultures which had been in low oxygen throughout their cultivation time. Expression of these markers was usually increased above basal levels when cells were switched from control to low oxygen at first passage and decreased for cells switched from low to control oxygen. We conclude that rMSCs in culture function optimally in an atmosphere of reduced oxygen that more closely approximates documented in vivo oxygen tension. © 2001 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.1081</identifier><identifier>PMID: 11319758</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Alkaline Phosphatase - metabolism ; Animals ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Calcium - metabolism ; Cell Differentiation - physiology ; Cell Division - physiology ; Cell Hypoxia - physiology ; Cells, Cultured ; Chondrogenesis - physiology ; Male ; Mesoderm - cytology ; Mesoderm - metabolism ; Osteogenesis - physiology ; Rats ; Rats, Inbred F344 ; Stem Cells - cytology ; Stem Cells - metabolism</subject><ispartof>Journal of cellular physiology, 2001-06, Vol.187 (3), p.345-355</ispartof><rights>Copyright © 2001 Wiley‐Liss, Inc.</rights><rights>Copyright 2001 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4211-6678a83c4436392e5c7a896db76363a63ecf33c2f99b08551f74f9a4cd8e74ad3</citedby><cites>FETCH-LOGICAL-c4211-6678a83c4436392e5c7a896db76363a63ecf33c2f99b08551f74f9a4cd8e74ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.1081$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.1081$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11319758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lennon, Donald P.</creatorcontrib><creatorcontrib>Edmison, John M.</creatorcontrib><creatorcontrib>Caplan, Arnold I.</creatorcontrib><title>Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Rat mesenchymal stem cells (rMSCs) represent a small portion of the cells in the stromal compartment of bone marrow and have the potential to differentiate into bone, cartilage, fat, and fibrous tissue. These mesenchymal progenitor cells were maintained as primary isolates and as subcultured cells in separate closed modular incubator chambers purged with either 95% air and 5% CO2 (20% or control oxygen) or 5% oxygen, 5% CO2, and 90% nitrogen (5% or low oxygen). At first passage, some cells from each oxygen condition were loaded into porous ceramic vehicles and implanted into syngeneic host animals in an in vivo assay for osteochondrogenesis. The remaining cells were continued in vitro in the same oxygen tension as for primary culture or were switched to the alternate condition. The first passage cells were examined for in vitro osteogenesis with assays involving the quantification of alkaline phosphatase activity and calcium and DNA content as well as by von Kossa staining to detect mineralization. Cultures maintained in low oxygen had a greater number of colonies as primary isolates and proliferated more rapidly throughout their time in vitro, as indicated by hemacytometer counts at the end of primary culture and increased DNA values for first passage cells. Moreover, rMSCs cultivated in 5% oxygen produced more bone than cells cultured in 20% oxygen when harvested and loaded into porous ceramic cubes and implanted into syngeneic host animals. Finally, markers for osteogenesis, including alkaline phosphatase activity, calcium content, and von Kossa staining, were elevated in cultures which had been in low oxygen throughout their cultivation time. Expression of these markers was usually increased above basal levels when cells were switched from control to low oxygen at first passage and decreased for cells switched from low to control oxygen. We conclude that rMSCs in culture function optimally in an atmosphere of reduced oxygen that more closely approximates documented in vivo oxygen tension. © 2001 Wiley‐Liss, Inc.</description><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Calcium - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Division - physiology</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured</subject><subject>Chondrogenesis - physiology</subject><subject>Male</subject><subject>Mesoderm - cytology</subject><subject>Mesoderm - metabolism</subject><subject>Osteogenesis - physiology</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFuFCEYgInR2G018QkMJ9PLKAwMDN50025tmtoYTY-EhR9LnRlWmNl2n6CvLZud6MkT8PPxJXwIvaHkPSWk_nBvN2XT0mdoQYmSFRdN_RwtyhWtVMPpETrO-Z4QohRjL9ERpYwq2bQL9LScujFszRjigKPHyYy4NynFh8pBCltwuIcMg73b9abDeYQeW-i6jMOAE7jJFiI-7n7CgEcYctF8xGfegx0zLspCbcOYIjaDOxy2EceiifYuDi7F8hByyK_QC2-6DK_n9QT9OD_7vryorr6uviw_XVWW15RWQsjWtMxyzgRTNTRWmlYJt5aiDIxgYD1jtvZKrUnbNNRL7pXh1rUguXHsBL07eDcp_p4gj7oPef8hM0CcspakJZI3ooCnB9CmmHMCrzcplDI7TYneR9clut5HL-jb2Tmte3D_wLlyAaoD8BA62P1XpC-XN7Nw5kMJ9fiXN-mXFpLJRt9er3T7bXXx-fr2Up-zPzlmnK4</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Lennon, Donald P.</creator><creator>Edmison, John M.</creator><creator>Caplan, Arnold I.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200106</creationdate><title>Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis</title><author>Lennon, Donald P. ; Edmison, John M. ; Caplan, Arnold I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4211-6678a83c4436392e5c7a896db76363a63ecf33c2f99b08551f74f9a4cd8e74ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Calcium - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Division - physiology</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured</topic><topic>Chondrogenesis - physiology</topic><topic>Male</topic><topic>Mesoderm - cytology</topic><topic>Mesoderm - metabolism</topic><topic>Osteogenesis - physiology</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lennon, Donald P.</creatorcontrib><creatorcontrib>Edmison, John M.</creatorcontrib><creatorcontrib>Caplan, Arnold I.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lennon, Donald P.</au><au>Edmison, John M.</au><au>Caplan, Arnold I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2001-06</date><risdate>2001</risdate><volume>187</volume><issue>3</issue><spage>345</spage><epage>355</epage><pages>345-355</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Rat mesenchymal stem cells (rMSCs) represent a small portion of the cells in the stromal compartment of bone marrow and have the potential to differentiate into bone, cartilage, fat, and fibrous tissue. These mesenchymal progenitor cells were maintained as primary isolates and as subcultured cells in separate closed modular incubator chambers purged with either 95% air and 5% CO2 (20% or control oxygen) or 5% oxygen, 5% CO2, and 90% nitrogen (5% or low oxygen). At first passage, some cells from each oxygen condition were loaded into porous ceramic vehicles and implanted into syngeneic host animals in an in vivo assay for osteochondrogenesis. The remaining cells were continued in vitro in the same oxygen tension as for primary culture or were switched to the alternate condition. The first passage cells were examined for in vitro osteogenesis with assays involving the quantification of alkaline phosphatase activity and calcium and DNA content as well as by von Kossa staining to detect mineralization. Cultures maintained in low oxygen had a greater number of colonies as primary isolates and proliferated more rapidly throughout their time in vitro, as indicated by hemacytometer counts at the end of primary culture and increased DNA values for first passage cells. Moreover, rMSCs cultivated in 5% oxygen produced more bone than cells cultured in 20% oxygen when harvested and loaded into porous ceramic cubes and implanted into syngeneic host animals. Finally, markers for osteogenesis, including alkaline phosphatase activity, calcium content, and von Kossa staining, were elevated in cultures which had been in low oxygen throughout their cultivation time. Expression of these markers was usually increased above basal levels when cells were switched from control to low oxygen at first passage and decreased for cells switched from low to control oxygen. We conclude that rMSCs in culture function optimally in an atmosphere of reduced oxygen that more closely approximates documented in vivo oxygen tension. © 2001 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11319758</pmid><doi>10.1002/jcp.1081</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2001-06, Vol.187 (3), p.345-355
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_70807456
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alkaline Phosphatase - metabolism
Animals
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Calcium - metabolism
Cell Differentiation - physiology
Cell Division - physiology
Cell Hypoxia - physiology
Cells, Cultured
Chondrogenesis - physiology
Male
Mesoderm - cytology
Mesoderm - metabolism
Osteogenesis - physiology
Rats
Rats, Inbred F344
Stem Cells - cytology
Stem Cells - metabolism
title Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cultivation%20of%20rat%20marrow-derived%20mesenchymal%20stem%20cells%20in%20reduced%20oxygen%20tension:%20Effects%20on%20in%20vitro%20and%20in%20vivo%20osteochondrogenesis&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Lennon,%20Donald%20P.&rft.date=2001-06&rft.volume=187&rft.issue=3&rft.spage=345&rft.epage=355&rft.pages=345-355&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.1081&rft_dat=%3Cproquest_cross%3E70807456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70807456&rft_id=info:pmid/11319758&rfr_iscdi=true