An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN
The survival motor neuron genes, SMN1 and SMN2, encode identical proteins; however, only homo- zygous loss of SMN1 correlates with the development of spinal muscular atrophy (SMA). We have previously shown that a single non-polymorphic nucleotide difference in SMN exon 7 dramatically affects SMN mRN...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2000-01, Vol.9 (2), p.259-265 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The survival motor neuron genes, SMN1 and SMN2, encode identical proteins; however, only homo- zygous loss of SMN1 correlates with the development of spinal muscular atrophy (SMA). We have previously shown that a single non-polymorphic nucleotide difference in SMN exon 7 dramatically affects SMN mRNA processing. SMN1 primarily produces a full-length RNA whereas SMN2 expresses dramatically reduced full-length RNA and abundant levels of an aberrantly spliced transcript lacking exon 7. The importance of proper exon 7 processing has been underscored by the identification of several mutations within splice sites adjacent to exon 7. Here we show that an AG-rich exonic splice enhancer (ESE) in the center of SMN exon 7 is required for inclusion of exon 7. This region functioned as an ESE in a heterologous context, supporting efficient in vitro splicing of the Drosophila double-sex gene. Finally, the protein encoded by the exon-skipping event, Delta7, was less stable than full-length SMN, providing additional evidence of why SMN2 fails to compensate for the loss of SMN1 and leads to the development of SMA. |
---|---|
ISSN: | 0964-6906 1460-2083 |
DOI: | 10.1093/hmg/9.2.259 |