PDX-1 Is Required for Activation in Vivo from a Duodenum-specific Enhancer

The purine metabolic gene adenosine deaminase (ADA) is expressed along a defined spatiotemporal pattern in the developing mammalian small intestine, where high-level expression is limited to the villous epithelium of the duodenum. This activation is observed in rodents as the intestine completes the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-04, Vol.276 (17), p.14434-14442
Hauptverfasser: Dusing, M R, Florence, E A, Wiginton, D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14442
container_issue 17
container_start_page 14434
container_title The Journal of biological chemistry
container_volume 276
creator Dusing, M R
Florence, E A
Wiginton, D A
description The purine metabolic gene adenosine deaminase (ADA) is expressed along a defined spatiotemporal pattern in the developing mammalian small intestine, where high-level expression is limited to the villous epithelium of the duodenum. This activation is observed in rodents as the intestine completes the final maturation resulting in adult crypt-villus structures at 2–3 weeks postpartum. A regulatory module responsible for this pattern of expression has been identified in the second intron of the human ADA gene. Of the multiple duodenal proteins that can interact with this small duodenal enhancer region, the studies contained in this work describe the identification of five of these proteins as the dispersed homeobox protein PDX-1. This transcription factor exhibits a profile of expression in the small intestine similar to that observed for ADA, making it an ideal candidate factor for the duodenum-specific ADA enhancer. Loss of PDX-1 binding, via a PDX-1 mutated enhancer transgenic construction, resulted in complete loss of high-level activation in the duodenum, demonstrating the absolute requirement for this factor in vivo . However, co-transfection experiments suggest that other proteins that bind the enhancer are also required for enhancer function because PDX-1 alone was incapable of significant transactivation.
doi_str_mv 10.1074/jbc.M009249200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70793285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70793285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-cb7848d859fe838918c25f79ff06f0b3c0fd046aa1788476d1f4a3beb4a9c4dd3</originalsourceid><addsrcrecordid>eNqFkEFPwjAYhhujEUSvHk0PxtuwXTvaHgmgYjAao4Zb03WtlLAV2g3jv3cEEo5-l-_yvO-bPABcY9THiNH7Za77LwiJlIoUoRPQxYiThGR4fgq6CKU4EWnGO-AixiVqjwp8DjoYp4xTjrvg-W08TzCcRvhuNo0LpoDWBzjUtduq2vkKugp-ua2HNvgSKjhufGGqpkzi2mhnnYaTaqEqbcIlOLNqFc3V4ffA58PkY_SUzF4fp6PhLNFE4DrR-W664JmwhhMuMNdpZpmwFg0syolGtkB0oBRmnFM2KLCliuQmp0poWhSkB-72vevgN42JtSxd1Ga1UpXxTZQMMUFSnv0LtgNUCEZasL8HdfAxBmPlOrhShV-Jkdxplq1medTcBm4OzU1emuKIH7y2wO0eWLjvxU-rVebO64UpZcoG7bDElBJK_gAvfYMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17849973</pqid></control><display><type>article</type><title>PDX-1 Is Required for Activation in Vivo from a Duodenum-specific Enhancer</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Dusing, M R ; Florence, E A ; Wiginton, D A</creator><creatorcontrib>Dusing, M R ; Florence, E A ; Wiginton, D A</creatorcontrib><description>The purine metabolic gene adenosine deaminase (ADA) is expressed along a defined spatiotemporal pattern in the developing mammalian small intestine, where high-level expression is limited to the villous epithelium of the duodenum. This activation is observed in rodents as the intestine completes the final maturation resulting in adult crypt-villus structures at 2–3 weeks postpartum. A regulatory module responsible for this pattern of expression has been identified in the second intron of the human ADA gene. Of the multiple duodenal proteins that can interact with this small duodenal enhancer region, the studies contained in this work describe the identification of five of these proteins as the dispersed homeobox protein PDX-1. This transcription factor exhibits a profile of expression in the small intestine similar to that observed for ADA, making it an ideal candidate factor for the duodenum-specific ADA enhancer. Loss of PDX-1 binding, via a PDX-1 mutated enhancer transgenic construction, resulted in complete loss of high-level activation in the duodenum, demonstrating the absolute requirement for this factor in vivo . However, co-transfection experiments suggest that other proteins that bind the enhancer are also required for enhancer function because PDX-1 alone was incapable of significant transactivation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M009249200</identifier><identifier>PMID: 11278481</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>ADA gene ; Adenosine Deaminase - biosynthesis ; Adenosine Deaminase - genetics ; Amino Acid Motifs ; Animals ; Animals, Genetically Modified ; Base Sequence ; Binding Sites ; Cell Nucleus - metabolism ; CHO Cells ; Cricetinae ; Duodenum - metabolism ; Enhancer Elements, Genetic ; Enzyme Activation ; Homeodomain Proteins - metabolism ; Humans ; Intestinal Mucosa - metabolism ; Introns ; Mice ; Models, Genetic ; Molecular Sequence Data ; Mutation ; PDX-1 protein ; Plasmids - metabolism ; Protein Binding ; Protein Biosynthesis ; Trans-Activators - physiology ; Transcription Factors - metabolism ; Transcription, Genetic ; Transcriptional Activation ; Transfection ; Transgenes</subject><ispartof>The Journal of biological chemistry, 2001-04, Vol.276 (17), p.14434-14442</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-cb7848d859fe838918c25f79ff06f0b3c0fd046aa1788476d1f4a3beb4a9c4dd3</citedby><cites>FETCH-LOGICAL-c391t-cb7848d859fe838918c25f79ff06f0b3c0fd046aa1788476d1f4a3beb4a9c4dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11278481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dusing, M R</creatorcontrib><creatorcontrib>Florence, E A</creatorcontrib><creatorcontrib>Wiginton, D A</creatorcontrib><title>PDX-1 Is Required for Activation in Vivo from a Duodenum-specific Enhancer</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The purine metabolic gene adenosine deaminase (ADA) is expressed along a defined spatiotemporal pattern in the developing mammalian small intestine, where high-level expression is limited to the villous epithelium of the duodenum. This activation is observed in rodents as the intestine completes the final maturation resulting in adult crypt-villus structures at 2–3 weeks postpartum. A regulatory module responsible for this pattern of expression has been identified in the second intron of the human ADA gene. Of the multiple duodenal proteins that can interact with this small duodenal enhancer region, the studies contained in this work describe the identification of five of these proteins as the dispersed homeobox protein PDX-1. This transcription factor exhibits a profile of expression in the small intestine similar to that observed for ADA, making it an ideal candidate factor for the duodenum-specific ADA enhancer. Loss of PDX-1 binding, via a PDX-1 mutated enhancer transgenic construction, resulted in complete loss of high-level activation in the duodenum, demonstrating the absolute requirement for this factor in vivo . However, co-transfection experiments suggest that other proteins that bind the enhancer are also required for enhancer function because PDX-1 alone was incapable of significant transactivation.</description><subject>ADA gene</subject><subject>Adenosine Deaminase - biosynthesis</subject><subject>Adenosine Deaminase - genetics</subject><subject>Amino Acid Motifs</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Cell Nucleus - metabolism</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Duodenum - metabolism</subject><subject>Enhancer Elements, Genetic</subject><subject>Enzyme Activation</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Introns</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>PDX-1 protein</subject><subject>Plasmids - metabolism</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Trans-Activators - physiology</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><subject>Transfection</subject><subject>Transgenes</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFPwjAYhhujEUSvHk0PxtuwXTvaHgmgYjAao4Zb03WtlLAV2g3jv3cEEo5-l-_yvO-bPABcY9THiNH7Za77LwiJlIoUoRPQxYiThGR4fgq6CKU4EWnGO-AixiVqjwp8DjoYp4xTjrvg-W08TzCcRvhuNo0LpoDWBzjUtduq2vkKugp-ua2HNvgSKjhufGGqpkzi2mhnnYaTaqEqbcIlOLNqFc3V4ffA58PkY_SUzF4fp6PhLNFE4DrR-W664JmwhhMuMNdpZpmwFg0syolGtkB0oBRmnFM2KLCliuQmp0poWhSkB-72vevgN42JtSxd1Ga1UpXxTZQMMUFSnv0LtgNUCEZasL8HdfAxBmPlOrhShV-Jkdxplq1medTcBm4OzU1emuKIH7y2wO0eWLjvxU-rVebO64UpZcoG7bDElBJK_gAvfYMI</recordid><startdate>20010427</startdate><enddate>20010427</enddate><creator>Dusing, M R</creator><creator>Florence, E A</creator><creator>Wiginton, D A</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20010427</creationdate><title>PDX-1 Is Required for Activation in Vivo from a Duodenum-specific Enhancer</title><author>Dusing, M R ; Florence, E A ; Wiginton, D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-cb7848d859fe838918c25f79ff06f0b3c0fd046aa1788476d1f4a3beb4a9c4dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>ADA gene</topic><topic>Adenosine Deaminase - biosynthesis</topic><topic>Adenosine Deaminase - genetics</topic><topic>Amino Acid Motifs</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Cell Nucleus - metabolism</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Duodenum - metabolism</topic><topic>Enhancer Elements, Genetic</topic><topic>Enzyme Activation</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Introns</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>PDX-1 protein</topic><topic>Plasmids - metabolism</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Trans-Activators - physiology</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><topic>Transfection</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dusing, M R</creatorcontrib><creatorcontrib>Florence, E A</creatorcontrib><creatorcontrib>Wiginton, D A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dusing, M R</au><au>Florence, E A</au><au>Wiginton, D A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDX-1 Is Required for Activation in Vivo from a Duodenum-specific Enhancer</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2001-04-27</date><risdate>2001</risdate><volume>276</volume><issue>17</issue><spage>14434</spage><epage>14442</epage><pages>14434-14442</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The purine metabolic gene adenosine deaminase (ADA) is expressed along a defined spatiotemporal pattern in the developing mammalian small intestine, where high-level expression is limited to the villous epithelium of the duodenum. This activation is observed in rodents as the intestine completes the final maturation resulting in adult crypt-villus structures at 2–3 weeks postpartum. A regulatory module responsible for this pattern of expression has been identified in the second intron of the human ADA gene. Of the multiple duodenal proteins that can interact with this small duodenal enhancer region, the studies contained in this work describe the identification of five of these proteins as the dispersed homeobox protein PDX-1. This transcription factor exhibits a profile of expression in the small intestine similar to that observed for ADA, making it an ideal candidate factor for the duodenum-specific ADA enhancer. Loss of PDX-1 binding, via a PDX-1 mutated enhancer transgenic construction, resulted in complete loss of high-level activation in the duodenum, demonstrating the absolute requirement for this factor in vivo . However, co-transfection experiments suggest that other proteins that bind the enhancer are also required for enhancer function because PDX-1 alone was incapable of significant transactivation.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>11278481</pmid><doi>10.1074/jbc.M009249200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2001-04, Vol.276 (17), p.14434-14442
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_70793285
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ADA gene
Adenosine Deaminase - biosynthesis
Adenosine Deaminase - genetics
Amino Acid Motifs
Animals
Animals, Genetically Modified
Base Sequence
Binding Sites
Cell Nucleus - metabolism
CHO Cells
Cricetinae
Duodenum - metabolism
Enhancer Elements, Genetic
Enzyme Activation
Homeodomain Proteins - metabolism
Humans
Intestinal Mucosa - metabolism
Introns
Mice
Models, Genetic
Molecular Sequence Data
Mutation
PDX-1 protein
Plasmids - metabolism
Protein Binding
Protein Biosynthesis
Trans-Activators - physiology
Transcription Factors - metabolism
Transcription, Genetic
Transcriptional Activation
Transfection
Transgenes
title PDX-1 Is Required for Activation in Vivo from a Duodenum-specific Enhancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDX-1%20Is%20Required%20for%20Activation%20in%20Vivo%20from%20a%20Duodenum-specific%20Enhancer&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Dusing,%20M%20R&rft.date=2001-04-27&rft.volume=276&rft.issue=17&rft.spage=14434&rft.epage=14442&rft.pages=14434-14442&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M009249200&rft_dat=%3Cproquest_cross%3E70793285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17849973&rft_id=info:pmid/11278481&rfr_iscdi=true