Predicting protein–protein interactions from primary structure

Motivation: An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. The expectation is that this will provide a fuller appreciation of cellular processes and networks at the protein level, ultimately leading to a better un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2001-05, Vol.17 (5), p.455-460
Hauptverfasser: Bock, Joel R., Gough, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. The expectation is that this will provide a fuller appreciation of cellular processes and networks at the protein level, ultimately leading to a better understanding of disease mechanisms and suggesting new means for intervention. This paper addresses the question: can protein–protein interactions be predicted directly from primary structure and associated data? Using a diverse database of known protein interactions, a Support Vector Machine (SVM) learning system was trained to recognize and predict interactions based solely on primary structure and associated physicochemical properties. Results: Inductive accuracy of the trained system, defined here as the percentage of correct protein interaction predictions for previously unseen test sets, averaged 80% for the ensemble of statistical experiments. Future proteomics studies may benefit from this research by proceeding directly from the automated identification of a cell’s gene products to prediction of protein interaction pairs. Contact: dgough@bioeng.ucsd.edu * To whom correspondence should be addressed.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/17.5.455