A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry

A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2001-04, Vol.73 (7), p.1416-1424
Hauptverfasser: Li, Jinxiang, Umemura, Tomonari, Odake, Tamao, Tsunoda, Kin-ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1424
container_issue 7
container_start_page 1416
container_title Analytical chemistry (Washington)
container_volume 73
creator Li, Jinxiang
Umemura, Tomonari
Odake, Tamao
Tsunoda, Kin-ichi
description A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5−120 μL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8−1.0 L/min when a 50 μm i.d. by 150 μm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24−95%) at the sample uptake rates of 5−100 μL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 μL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1−1.7% RSDs) are slightly better than those with the CFN (1.6−2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5−100 μL/min. The free aspiration rate of the HECFMN is 8.9 μL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.
doi_str_mv 10.1021/ac001282o
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70787853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71440488</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-82510d374436ce7c15eb03cbbce41dbfd1696435e34ca581ad74cff5698276353</originalsourceid><addsrcrecordid>eNpl0E1v1DAQBmALUdGlcOAPoIiKShwC_og_cixL263aipW63JAsxxmDSxIvdgJsfz2udrWV4DSHeWY08yL0iuD3BFPywViMCVU0PEEzwikuhVL0KZphjFlJJcaH6HlKdxkRTMQzdEgIo3mgnqGvp8XCf_tenjnnrYfBbop5DCmV5134Xdx4G8MAzdT5e4iFC7G4HNrJjv4XdFmGad1BWyw7k3pT3JiUits12DGGHsa4eYEOnOkSvNzVI_Tl_Gw1X5TXny8u56fXpakkHktFOcEtk1XFhAVpCYcGM9s0FirSNq4lohYV48Aqa7gippWVdY6LWlEpGGdH6GS7dx3DzwnSqHufLHSdGSBMSUsslVScZfjmH3gXpjjk2zQlWQhVqYzebZF9CCKC0-voexM3mmD9kLfe553t693CqemhfZS7gDM43gGTrOlcNIP1ae9qRmuKsyq3yqcR_uy7Jv7QQjLJ9Wp5qz8SdbX6tLzQi-zfbr2x6fGF_8_7C5mdoUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217856848</pqid></control><display><type>article</type><title>A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry</title><source>American Chemical Society Journals</source><creator>Li, Jinxiang ; Umemura, Tomonari ; Odake, Tamao ; Tsunoda, Kin-ichi</creator><creatorcontrib>Li, Jinxiang ; Umemura, Tomonari ; Odake, Tamao ; Tsunoda, Kin-ichi</creatorcontrib><description>A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5−120 μL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8−1.0 L/min when a 50 μm i.d. by 150 μm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24−95%) at the sample uptake rates of 5−100 μL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 μL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1−1.7% RSDs) are slightly better than those with the CFN (1.6−2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5−100 μL/min. The free aspiration rate of the HECFMN is 8.9 μL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac001282o</identifier><identifier>PMID: 11321289</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mass spectrometers and related techniques ; Physics ; Scientific imaging</subject><ispartof>Analytical chemistry (Washington), 2001-04, Vol.73 (7), p.1416-1424</ispartof><rights>Copyright © 2001 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 1, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-82510d374436ce7c15eb03cbbce41dbfd1696435e34ca581ad74cff5698276353</citedby><cites>FETCH-LOGICAL-a470t-82510d374436ce7c15eb03cbbce41dbfd1696435e34ca581ad74cff5698276353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac001282o$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac001282o$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=932920$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11321289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jinxiang</creatorcontrib><creatorcontrib>Umemura, Tomonari</creatorcontrib><creatorcontrib>Odake, Tamao</creatorcontrib><creatorcontrib>Tsunoda, Kin-ichi</creatorcontrib><title>A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5−120 μL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8−1.0 L/min when a 50 μm i.d. by 150 μm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24−95%) at the sample uptake rates of 5−100 μL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 μL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1−1.7% RSDs) are slightly better than those with the CFN (1.6−2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5−100 μL/min. The free aspiration rate of the HECFMN is 8.9 μL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mass spectrometers and related techniques</subject><subject>Physics</subject><subject>Scientific imaging</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpl0E1v1DAQBmALUdGlcOAPoIiKShwC_og_cixL263aipW63JAsxxmDSxIvdgJsfz2udrWV4DSHeWY08yL0iuD3BFPywViMCVU0PEEzwikuhVL0KZphjFlJJcaH6HlKdxkRTMQzdEgIo3mgnqGvp8XCf_tenjnnrYfBbop5DCmV5134Xdx4G8MAzdT5e4iFC7G4HNrJjv4XdFmGad1BWyw7k3pT3JiUits12DGGHsa4eYEOnOkSvNzVI_Tl_Gw1X5TXny8u56fXpakkHktFOcEtk1XFhAVpCYcGM9s0FirSNq4lohYV48Aqa7gippWVdY6LWlEpGGdH6GS7dx3DzwnSqHufLHSdGSBMSUsslVScZfjmH3gXpjjk2zQlWQhVqYzebZF9CCKC0-voexM3mmD9kLfe553t693CqemhfZS7gDM43gGTrOlcNIP1ae9qRmuKsyq3yqcR_uy7Jv7QQjLJ9Wp5qz8SdbX6tLzQi-zfbr2x6fGF_8_7C5mdoUA</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Li, Jinxiang</creator><creator>Umemura, Tomonari</creator><creator>Odake, Tamao</creator><creator>Tsunoda, Kin-ichi</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010401</creationdate><title>A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry</title><author>Li, Jinxiang ; Umemura, Tomonari ; Odake, Tamao ; Tsunoda, Kin-ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-82510d374436ce7c15eb03cbbce41dbfd1696435e34ca581ad74cff5698276353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mass spectrometers and related techniques</topic><topic>Physics</topic><topic>Scientific imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinxiang</creatorcontrib><creatorcontrib>Umemura, Tomonari</creatorcontrib><creatorcontrib>Odake, Tamao</creatorcontrib><creatorcontrib>Tsunoda, Kin-ichi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinxiang</au><au>Umemura, Tomonari</au><au>Odake, Tamao</au><au>Tsunoda, Kin-ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>73</volume><issue>7</issue><spage>1416</spage><epage>1424</epage><pages>1416-1424</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5−120 μL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8−1.0 L/min when a 50 μm i.d. by 150 μm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24−95%) at the sample uptake rates of 5−100 μL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 μL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1−1.7% RSDs) are slightly better than those with the CFN (1.6−2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5−100 μL/min. The free aspiration rate of the HECFMN is 8.9 μL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11321289</pmid><doi>10.1021/ac001282o</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2001-04, Vol.73 (7), p.1416-1424
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70787853
source American Chemical Society Journals
subjects Chemistry
Exact sciences and technology
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mass spectrometers and related techniques
Physics
Scientific imaging
title A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Efficiency%20Cross-Flow%20Micronebulizer%20for%20Inductively%20Coupled%20Plasma%20Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Jinxiang&rft.date=2001-04-01&rft.volume=73&rft.issue=7&rft.spage=1416&rft.epage=1424&rft.pages=1416-1424&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac001282o&rft_dat=%3Cproquest_cross%3E71440488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217856848&rft_id=info:pmid/11321289&rfr_iscdi=true