A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry
A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2001-04, Vol.73 (7), p.1416-1424 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1424 |
---|---|
container_issue | 7 |
container_start_page | 1416 |
container_title | Analytical chemistry (Washington) |
container_volume | 73 |
creator | Li, Jinxiang Umemura, Tomonari Odake, Tamao Tsunoda, Kin-ichi |
description | A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5−120 μL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8−1.0 L/min when a 50 μm i.d. by 150 μm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24−95%) at the sample uptake rates of 5−100 μL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 μL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1−1.7% RSDs) are slightly better than those with the CFN (1.6−2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5−100 μL/min. The free aspiration rate of the HECFMN is 8.9 μL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography. |
doi_str_mv | 10.1021/ac001282o |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70787853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71440488</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-82510d374436ce7c15eb03cbbce41dbfd1696435e34ca581ad74cff5698276353</originalsourceid><addsrcrecordid>eNpl0E1v1DAQBmALUdGlcOAPoIiKShwC_og_cixL263aipW63JAsxxmDSxIvdgJsfz2udrWV4DSHeWY08yL0iuD3BFPywViMCVU0PEEzwikuhVL0KZphjFlJJcaH6HlKdxkRTMQzdEgIo3mgnqGvp8XCf_tenjnnrYfBbop5DCmV5134Xdx4G8MAzdT5e4iFC7G4HNrJjv4XdFmGad1BWyw7k3pT3JiUits12DGGHsa4eYEOnOkSvNzVI_Tl_Gw1X5TXny8u56fXpakkHktFOcEtk1XFhAVpCYcGM9s0FirSNq4lohYV48Aqa7gippWVdY6LWlEpGGdH6GS7dx3DzwnSqHufLHSdGSBMSUsslVScZfjmH3gXpjjk2zQlWQhVqYzebZF9CCKC0-voexM3mmD9kLfe553t693CqemhfZS7gDM43gGTrOlcNIP1ae9qRmuKsyq3yqcR_uy7Jv7QQjLJ9Wp5qz8SdbX6tLzQi-zfbr2x6fGF_8_7C5mdoUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217856848</pqid></control><display><type>article</type><title>A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry</title><source>American Chemical Society Journals</source><creator>Li, Jinxiang ; Umemura, Tomonari ; Odake, Tamao ; Tsunoda, Kin-ichi</creator><creatorcontrib>Li, Jinxiang ; Umemura, Tomonari ; Odake, Tamao ; Tsunoda, Kin-ichi</creatorcontrib><description>A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5−120 μL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8−1.0 L/min when a 50 μm i.d. by 150 μm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24−95%) at the sample uptake rates of 5−100 μL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 μL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1−1.7% RSDs) are slightly better than those with the CFN (1.6−2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5−100 μL/min. The free aspiration rate of the HECFMN is 8.9 μL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac001282o</identifier><identifier>PMID: 11321289</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mass spectrometers and related techniques ; Physics ; Scientific imaging</subject><ispartof>Analytical chemistry (Washington), 2001-04, Vol.73 (7), p.1416-1424</ispartof><rights>Copyright © 2001 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 1, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-82510d374436ce7c15eb03cbbce41dbfd1696435e34ca581ad74cff5698276353</citedby><cites>FETCH-LOGICAL-a470t-82510d374436ce7c15eb03cbbce41dbfd1696435e34ca581ad74cff5698276353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac001282o$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac001282o$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=932920$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11321289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jinxiang</creatorcontrib><creatorcontrib>Umemura, Tomonari</creatorcontrib><creatorcontrib>Odake, Tamao</creatorcontrib><creatorcontrib>Tsunoda, Kin-ichi</creatorcontrib><title>A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5−120 μL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8−1.0 L/min when a 50 μm i.d. by 150 μm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24−95%) at the sample uptake rates of 5−100 μL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 μL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1−1.7% RSDs) are slightly better than those with the CFN (1.6−2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5−100 μL/min. The free aspiration rate of the HECFMN is 8.9 μL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mass spectrometers and related techniques</subject><subject>Physics</subject><subject>Scientific imaging</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpl0E1v1DAQBmALUdGlcOAPoIiKShwC_og_cixL263aipW63JAsxxmDSxIvdgJsfz2udrWV4DSHeWY08yL0iuD3BFPywViMCVU0PEEzwikuhVL0KZphjFlJJcaH6HlKdxkRTMQzdEgIo3mgnqGvp8XCf_tenjnnrYfBbop5DCmV5134Xdx4G8MAzdT5e4iFC7G4HNrJjv4XdFmGad1BWyw7k3pT3JiUits12DGGHsa4eYEOnOkSvNzVI_Tl_Gw1X5TXny8u56fXpakkHktFOcEtk1XFhAVpCYcGM9s0FirSNq4lohYV48Aqa7gippWVdY6LWlEpGGdH6GS7dx3DzwnSqHufLHSdGSBMSUsslVScZfjmH3gXpjjk2zQlWQhVqYzebZF9CCKC0-voexM3mmD9kLfe553t693CqemhfZS7gDM43gGTrOlcNIP1ae9qRmuKsyq3yqcR_uy7Jv7QQjLJ9Wp5qz8SdbX6tLzQi-zfbr2x6fGF_8_7C5mdoUA</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Li, Jinxiang</creator><creator>Umemura, Tomonari</creator><creator>Odake, Tamao</creator><creator>Tsunoda, Kin-ichi</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010401</creationdate><title>A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry</title><author>Li, Jinxiang ; Umemura, Tomonari ; Odake, Tamao ; Tsunoda, Kin-ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-82510d374436ce7c15eb03cbbce41dbfd1696435e34ca581ad74cff5698276353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mass spectrometers and related techniques</topic><topic>Physics</topic><topic>Scientific imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinxiang</creatorcontrib><creatorcontrib>Umemura, Tomonari</creatorcontrib><creatorcontrib>Odake, Tamao</creatorcontrib><creatorcontrib>Tsunoda, Kin-ichi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinxiang</au><au>Umemura, Tomonari</au><au>Odake, Tamao</au><au>Tsunoda, Kin-ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>73</volume><issue>7</issue><spage>1416</spage><epage>1424</epage><pages>1416-1424</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 μm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5−120 μL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8−1.0 L/min when a 50 μm i.d. by 150 μm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24−95%) at the sample uptake rates of 5−100 μL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 μL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1−1.7% RSDs) are slightly better than those with the CFN (1.6−2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5−100 μL/min. The free aspiration rate of the HECFMN is 8.9 μL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11321289</pmid><doi>10.1021/ac001282o</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2001-04, Vol.73 (7), p.1416-1424 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_70787853 |
source | American Chemical Society Journals |
subjects | Chemistry Exact sciences and technology Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mass spectrometers and related techniques Physics Scientific imaging |
title | A High-Efficiency Cross-Flow Micronebulizer for Inductively Coupled Plasma Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Efficiency%20Cross-Flow%20Micronebulizer%20for%20Inductively%20Coupled%20Plasma%20Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Jinxiang&rft.date=2001-04-01&rft.volume=73&rft.issue=7&rft.spage=1416&rft.epage=1424&rft.pages=1416-1424&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac001282o&rft_dat=%3Cproquest_cross%3E71440488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217856848&rft_id=info:pmid/11321289&rfr_iscdi=true |