Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications

Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2008-07, Vol.36 (7), p.1228-1241
Hauptverfasser: Orr, David E., Burg, Karen J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1241
container_issue 7
container_start_page 1228
container_title Annals of biomedical engineering
container_volume 36
creator Orr, David E.
Burg, Karen J. L.
description Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone in vivo . The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm 2 . Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.
doi_str_mv 10.1007/s10439-008-9505-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70784968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897318291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-6fc4cde89079feb6d520a10d34f6eacc2feca1852672e13a6699793f1e4569d13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhB3BBFgdugXGc-OPYLi2tVASHcrZcZ7y4ytrBToR65J_jsCtVQkKcfHn8zMz7EvKawXsGID8UBh3XDYBqdA99A0_IhvWSN1oo8ZRsADQ0QovuhLwo5R6AMcX75-SEqY4ryfiG_PqIJewiTZ5a-jkNy2gzPQ8po3VzynRO9Dq6lKeU7Yz0PM3f6VfMfikhRXo5pp_UxoFePQw5ldnOwdFt2k8Zyx_AV8VtKGVBehF3ISLmEHf0bJrG4CqdYnlJnnk7Fnx1fE_Jt8uL2-1Vc_Pl0_X27KZxnRBzI7zr3IBKg9Qe78TQt2AZDLzzou7qWo_OMtW3QrbIuBVCa6m5Z9j1Qg-Mn5J3B--U048Fy2z2oTgcRxsxLcVIkKqrwf0X5LwVopdQwbd_gfdpybEeYVpQWrZMrjZ2gFwNqGT0Zsphb_ODYWDWFs2hRVNbNGuLZhW_OYqXuz0Ojz-OtVWgPQBlWvPE_Dj539bfXAapBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208972178</pqid></control><display><type>article</type><title>Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Orr, David E. ; Burg, Karen J. L.</creator><creatorcontrib>Orr, David E. ; Burg, Karen J. L.</creatorcontrib><description>Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone in vivo . The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm 2 . Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-008-9505-0</identifier><identifier>PMID: 18438713</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3T3 Cells ; Animals ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Bioreactors ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cell Proliferation ; Cell Survival - physiology ; Classical Mechanics ; Compressive Strength ; Computer-Aided Design ; Fluid flow ; Mechanotransduction, Cellular - physiology ; Mice ; Microfluidics - instrumentation ; Microfluidics - methods ; Perfusion - instrumentation ; Porosity ; Shear stress ; Tissue Engineering - instrumentation ; Tissue Engineering - methods</subject><ispartof>Annals of biomedical engineering, 2008-07, Vol.36 (7), p.1228-1241</ispartof><rights>Biomedical Engineering Society 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-6fc4cde89079feb6d520a10d34f6eacc2feca1852672e13a6699793f1e4569d13</citedby><cites>FETCH-LOGICAL-c466t-6fc4cde89079feb6d520a10d34f6eacc2feca1852672e13a6699793f1e4569d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-008-9505-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-008-9505-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18438713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orr, David E.</creatorcontrib><creatorcontrib>Burg, Karen J. L.</creatorcontrib><title>Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone in vivo . The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm 2 . Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Bioreactors</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Proliferation</subject><subject>Cell Survival - physiology</subject><subject>Classical Mechanics</subject><subject>Compressive Strength</subject><subject>Computer-Aided Design</subject><subject>Fluid flow</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mice</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Perfusion - instrumentation</subject><subject>Porosity</subject><subject>Shear stress</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1v1DAQhi0EokvhB3BBFgdugXGc-OPYLi2tVASHcrZcZ7y4ytrBToR65J_jsCtVQkKcfHn8zMz7EvKawXsGID8UBh3XDYBqdA99A0_IhvWSN1oo8ZRsADQ0QovuhLwo5R6AMcX75-SEqY4ryfiG_PqIJewiTZ5a-jkNy2gzPQ8po3VzynRO9Dq6lKeU7Yz0PM3f6VfMfikhRXo5pp_UxoFePQw5ldnOwdFt2k8Zyx_AV8VtKGVBehF3ISLmEHf0bJrG4CqdYnlJnnk7Fnx1fE_Jt8uL2-1Vc_Pl0_X27KZxnRBzI7zr3IBKg9Qe78TQt2AZDLzzou7qWo_OMtW3QrbIuBVCa6m5Z9j1Qg-Mn5J3B--U048Fy2z2oTgcRxsxLcVIkKqrwf0X5LwVopdQwbd_gfdpybEeYVpQWrZMrjZ2gFwNqGT0Zsphb_ODYWDWFs2hRVNbNGuLZhW_OYqXuz0Ojz-OtVWgPQBlWvPE_Dj539bfXAapBw</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Orr, David E.</creator><creator>Burg, Karen J. L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications</title><author>Orr, David E. ; Burg, Karen J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-6fc4cde89079feb6d520a10d34f6eacc2feca1852672e13a6699793f1e4569d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Bioreactors</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Proliferation</topic><topic>Cell Survival - physiology</topic><topic>Classical Mechanics</topic><topic>Compressive Strength</topic><topic>Computer-Aided Design</topic><topic>Fluid flow</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mice</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Perfusion - instrumentation</topic><topic>Porosity</topic><topic>Shear stress</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orr, David E.</creatorcontrib><creatorcontrib>Burg, Karen J. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orr, David E.</au><au>Burg, Karen J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>36</volume><issue>7</issue><spage>1228</spage><epage>1241</epage><pages>1228-1241</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone in vivo . The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm 2 . Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>18438713</pmid><doi>10.1007/s10439-008-9505-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2008-07, Vol.36 (7), p.1228-1241
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_70784968
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 3T3 Cells
Animals
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Bioreactors
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
Cell Proliferation
Cell Survival - physiology
Classical Mechanics
Compressive Strength
Computer-Aided Design
Fluid flow
Mechanotransduction, Cellular - physiology
Mice
Microfluidics - instrumentation
Microfluidics - methods
Perfusion - instrumentation
Porosity
Shear stress
Tissue Engineering - instrumentation
Tissue Engineering - methods
title Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Modular%20Bioreactor%20to%20Incorporate%20Both%20Perfusion%20Flow%20and%20Hydrostatic%20Compression%20for%20Tissue%20Engineering%20Applications&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Orr,%20David%20E.&rft.date=2008-07-01&rft.volume=36&rft.issue=7&rft.spage=1228&rft.epage=1241&rft.pages=1228-1241&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-008-9505-0&rft_dat=%3Cproquest_cross%3E1897318291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208972178&rft_id=info:pmid/18438713&rfr_iscdi=true