Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications
Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to mor...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2008-07, Vol.36 (7), p.1228-1241 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1241 |
---|---|
container_issue | 7 |
container_start_page | 1228 |
container_title | Annals of biomedical engineering |
container_volume | 36 |
creator | Orr, David E. Burg, Karen J. L. |
description | Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone
in vivo
. The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm
2
. Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types. |
doi_str_mv | 10.1007/s10439-008-9505-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70784968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897318291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-6fc4cde89079feb6d520a10d34f6eacc2feca1852672e13a6699793f1e4569d13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhB3BBFgdugXGc-OPYLi2tVASHcrZcZ7y4ytrBToR65J_jsCtVQkKcfHn8zMz7EvKawXsGID8UBh3XDYBqdA99A0_IhvWSN1oo8ZRsADQ0QovuhLwo5R6AMcX75-SEqY4ryfiG_PqIJewiTZ5a-jkNy2gzPQ8po3VzynRO9Dq6lKeU7Yz0PM3f6VfMfikhRXo5pp_UxoFePQw5ldnOwdFt2k8Zyx_AV8VtKGVBehF3ISLmEHf0bJrG4CqdYnlJnnk7Fnx1fE_Jt8uL2-1Vc_Pl0_X27KZxnRBzI7zr3IBKg9Qe78TQt2AZDLzzou7qWo_OMtW3QrbIuBVCa6m5Z9j1Qg-Mn5J3B--U048Fy2z2oTgcRxsxLcVIkKqrwf0X5LwVopdQwbd_gfdpybEeYVpQWrZMrjZ2gFwNqGT0Zsphb_ODYWDWFs2hRVNbNGuLZhW_OYqXuz0Ojz-OtVWgPQBlWvPE_Dj539bfXAapBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208972178</pqid></control><display><type>article</type><title>Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Orr, David E. ; Burg, Karen J. L.</creator><creatorcontrib>Orr, David E. ; Burg, Karen J. L.</creatorcontrib><description>Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone
in vivo
. The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm
2
. Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-008-9505-0</identifier><identifier>PMID: 18438713</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3T3 Cells ; Animals ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Bioreactors ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cell Proliferation ; Cell Survival - physiology ; Classical Mechanics ; Compressive Strength ; Computer-Aided Design ; Fluid flow ; Mechanotransduction, Cellular - physiology ; Mice ; Microfluidics - instrumentation ; Microfluidics - methods ; Perfusion - instrumentation ; Porosity ; Shear stress ; Tissue Engineering - instrumentation ; Tissue Engineering - methods</subject><ispartof>Annals of biomedical engineering, 2008-07, Vol.36 (7), p.1228-1241</ispartof><rights>Biomedical Engineering Society 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-6fc4cde89079feb6d520a10d34f6eacc2feca1852672e13a6699793f1e4569d13</citedby><cites>FETCH-LOGICAL-c466t-6fc4cde89079feb6d520a10d34f6eacc2feca1852672e13a6699793f1e4569d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-008-9505-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-008-9505-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18438713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orr, David E.</creatorcontrib><creatorcontrib>Burg, Karen J. L.</creatorcontrib><title>Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone
in vivo
. The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm
2
. Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Bioreactors</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Proliferation</subject><subject>Cell Survival - physiology</subject><subject>Classical Mechanics</subject><subject>Compressive Strength</subject><subject>Computer-Aided Design</subject><subject>Fluid flow</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mice</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Perfusion - instrumentation</subject><subject>Porosity</subject><subject>Shear stress</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1v1DAQhi0EokvhB3BBFgdugXGc-OPYLi2tVASHcrZcZ7y4ytrBToR65J_jsCtVQkKcfHn8zMz7EvKawXsGID8UBh3XDYBqdA99A0_IhvWSN1oo8ZRsADQ0QovuhLwo5R6AMcX75-SEqY4ryfiG_PqIJewiTZ5a-jkNy2gzPQ8po3VzynRO9Dq6lKeU7Yz0PM3f6VfMfikhRXo5pp_UxoFePQw5ldnOwdFt2k8Zyx_AV8VtKGVBehF3ISLmEHf0bJrG4CqdYnlJnnk7Fnx1fE_Jt8uL2-1Vc_Pl0_X27KZxnRBzI7zr3IBKg9Qe78TQt2AZDLzzou7qWo_OMtW3QrbIuBVCa6m5Z9j1Qg-Mn5J3B--U048Fy2z2oTgcRxsxLcVIkKqrwf0X5LwVopdQwbd_gfdpybEeYVpQWrZMrjZ2gFwNqGT0Zsphb_ODYWDWFs2hRVNbNGuLZhW_OYqXuz0Ojz-OtVWgPQBlWvPE_Dj539bfXAapBw</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Orr, David E.</creator><creator>Burg, Karen J. L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications</title><author>Orr, David E. ; Burg, Karen J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-6fc4cde89079feb6d520a10d34f6eacc2feca1852672e13a6699793f1e4569d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Bioreactors</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Proliferation</topic><topic>Cell Survival - physiology</topic><topic>Classical Mechanics</topic><topic>Compressive Strength</topic><topic>Computer-Aided Design</topic><topic>Fluid flow</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mice</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Perfusion - instrumentation</topic><topic>Porosity</topic><topic>Shear stress</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orr, David E.</creatorcontrib><creatorcontrib>Burg, Karen J. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orr, David E.</au><au>Burg, Karen J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>36</volume><issue>7</issue><spage>1228</spage><epage>1241</epage><pages>1228-1241</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone
in vivo
. The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm
2
. Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>18438713</pmid><doi>10.1007/s10439-008-9505-0</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2008-07, Vol.36 (7), p.1228-1241 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_70784968 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 3T3 Cells Animals Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Bioreactors Cell Culture Techniques - instrumentation Cell Culture Techniques - methods Cell Proliferation Cell Survival - physiology Classical Mechanics Compressive Strength Computer-Aided Design Fluid flow Mechanotransduction, Cellular - physiology Mice Microfluidics - instrumentation Microfluidics - methods Perfusion - instrumentation Porosity Shear stress Tissue Engineering - instrumentation Tissue Engineering - methods |
title | Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Modular%20Bioreactor%20to%20Incorporate%20Both%20Perfusion%20Flow%20and%20Hydrostatic%20Compression%20for%20Tissue%20Engineering%20Applications&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Orr,%20David%20E.&rft.date=2008-07-01&rft.volume=36&rft.issue=7&rft.spage=1228&rft.epage=1241&rft.pages=1228-1241&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-008-9505-0&rft_dat=%3Cproquest_cross%3E1897318291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208972178&rft_id=info:pmid/18438713&rfr_iscdi=true |