Molecular basis for induction of ocular dominance plasticity
The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. T...
Gespeichert in:
Veröffentlicht in: | Journal of neurobiology 1999-10, Vol.41 (1), p.83-91 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 1 |
container_start_page | 83 |
container_title | Journal of neurobiology |
container_volume | 41 |
creator | Bear, Mark F. Rittenhouse, Cynthia D. |
description | The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 83–91, 1999 |
doi_str_mv | 10.1002/(SICI)1097-4695(199910)41:1<83::AID-NEU11>3.0.CO;2-Z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70784675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70784675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4281-2c9394874226f39dd80d87023ecda25dbd6a699cf334af0916338c04e442f5833</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpaNykf6HsKSSHdUYa7a7kmkLYpqkhqQ9NLrkMsqQFlfXKXXkp_ve1uyEUEnoamI_nZR7G5hymHEBcnv9Y1IsLDrrKZamLc6615nAh-YzPFc5mV4sv-ffrB84_4xSm9fKTyB_fsMnzwVs22WNEjoDymL1P6ScAaF2Id-yYQwGS62LC5nex9XZoTZ-tTAopa2Kfhc4Ndhtil8Umi-PUxXXoTGd9tmlN2gYbtrtTdtSYNvkPT_WEPXy9vq-_5bfLm0V9dZtbKRTPhdWopaqkEGWD2jkFTlUg0FtnROFWrjSl1rZBlKYBzUtEZUF6KUVTKMQTdjZyN338Nfi0pXVI1ret6XwcElVQKVlWxX7xfly0fUyp9w1t-rA2_Y440MEq0cEqHSTRQRKNVkly4qSQaG-V_lolJKB6SYIe99iPT_nDau3dP9BRIz4__ju0fvci9P-Zr0WODfwDzGSRGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70784675</pqid></control><display><type>article</type><title>Molecular basis for induction of ocular dominance plasticity</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Bear, Mark F. ; Rittenhouse, Cynthia D.</creator><creatorcontrib>Bear, Mark F. ; Rittenhouse, Cynthia D.</creatorcontrib><description>The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 83–91, 1999</description><identifier>ISSN: 0022-3034</identifier><identifier>EISSN: 1097-4695</identifier><identifier>DOI: 10.1002/(SICI)1097-4695(199910)41:1<83::AID-NEU11>3.0.CO;2-Z</identifier><identifier>PMID: 10504195</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Animals ; Neural Inhibition - physiology ; Neuronal Plasticity - physiology ; Receptors, N-Methyl-D-Aspartate - physiology ; Vision, Monocular - physiology ; Visual Cortex - chemistry ; Visual Cortex - growth & development ; Visual Cortex - physiology</subject><ispartof>Journal of neurobiology, 1999-10, Vol.41 (1), p.83-91</ispartof><rights>Copyright © 1999 John Wiley & Sons, Inc.</rights><rights>Copyright 1999 John Wiley & Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4281-2c9394874226f39dd80d87023ecda25dbd6a699cf334af0916338c04e442f5833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-4695%28199910%2941%3A1%3C83%3A%3AAID-NEU11%3E3.0.CO%3B2-Z$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-4695%28199910%2941%3A1%3C83%3A%3AAID-NEU11%3E3.0.CO%3B2-Z$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10504195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bear, Mark F.</creatorcontrib><creatorcontrib>Rittenhouse, Cynthia D.</creatorcontrib><title>Molecular basis for induction of ocular dominance plasticity</title><title>Journal of neurobiology</title><addtitle>J Neurobiol</addtitle><description>The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 83–91, 1999</description><subject>Animals</subject><subject>Neural Inhibition - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual Cortex - chemistry</subject><subject>Visual Cortex - growth & development</subject><subject>Visual Cortex - physiology</subject><issn>0022-3034</issn><issn>1097-4695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1rGzEQhkVpaNykf6HsKSSHdUYa7a7kmkLYpqkhqQ9NLrkMsqQFlfXKXXkp_ve1uyEUEnoamI_nZR7G5hymHEBcnv9Y1IsLDrrKZamLc6615nAh-YzPFc5mV4sv-ffrB84_4xSm9fKTyB_fsMnzwVs22WNEjoDymL1P6ScAaF2Id-yYQwGS62LC5nex9XZoTZ-tTAopa2Kfhc4Ndhtil8Umi-PUxXXoTGd9tmlN2gYbtrtTdtSYNvkPT_WEPXy9vq-_5bfLm0V9dZtbKRTPhdWopaqkEGWD2jkFTlUg0FtnROFWrjSl1rZBlKYBzUtEZUF6KUVTKMQTdjZyN338Nfi0pXVI1ret6XwcElVQKVlWxX7xfly0fUyp9w1t-rA2_Y440MEq0cEqHSTRQRKNVkly4qSQaG-V_lolJKB6SYIe99iPT_nDau3dP9BRIz4__ju0fvci9P-Zr0WODfwDzGSRGA</recordid><startdate>199910</startdate><enddate>199910</enddate><creator>Bear, Mark F.</creator><creator>Rittenhouse, Cynthia D.</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199910</creationdate><title>Molecular basis for induction of ocular dominance plasticity</title><author>Bear, Mark F. ; Rittenhouse, Cynthia D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4281-2c9394874226f39dd80d87023ecda25dbd6a699cf334af0916338c04e442f5833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Neural Inhibition - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual Cortex - chemistry</topic><topic>Visual Cortex - growth & development</topic><topic>Visual Cortex - physiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Bear, Mark F.</creatorcontrib><creatorcontrib>Rittenhouse, Cynthia D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bear, Mark F.</au><au>Rittenhouse, Cynthia D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis for induction of ocular dominance plasticity</atitle><jtitle>Journal of neurobiology</jtitle><addtitle>J Neurobiol</addtitle><date>1999-10</date><risdate>1999</risdate><volume>41</volume><issue>1</issue><spage>83</spage><epage>91</epage><pages>83-91</pages><issn>0022-3034</issn><eissn>1097-4695</eissn><abstract>The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 83–91, 1999</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10504195</pmid><doi>10.1002/(SICI)1097-4695(199910)41:1<83::AID-NEU11>3.0.CO;2-Z</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3034 |
ispartof | Journal of neurobiology, 1999-10, Vol.41 (1), p.83-91 |
issn | 0022-3034 1097-4695 |
language | eng |
recordid | cdi_proquest_miscellaneous_70784675 |
source | MEDLINE; Wiley Free Content; Wiley Online Library All Journals |
subjects | Animals Neural Inhibition - physiology Neuronal Plasticity - physiology Receptors, N-Methyl-D-Aspartate - physiology Vision, Monocular - physiology Visual Cortex - chemistry Visual Cortex - growth & development Visual Cortex - physiology |
title | Molecular basis for induction of ocular dominance plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20for%20induction%20of%20ocular%20dominance%20plasticity&rft.jtitle=Journal%20of%20neurobiology&rft.au=Bear,%20Mark%20F.&rft.date=1999-10&rft.volume=41&rft.issue=1&rft.spage=83&rft.epage=91&rft.pages=83-91&rft.issn=0022-3034&rft.eissn=1097-4695&rft_id=info:doi/10.1002/(SICI)1097-4695(199910)41:1%3C83::AID-NEU11%3E3.0.CO;2-Z&rft_dat=%3Cproquest_cross%3E70784675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70784675&rft_id=info:pmid/10504195&rfr_iscdi=true |