Molecular basis for induction of ocular dominance plasticity

The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurobiology 1999-10, Vol.41 (1), p.83-91
Hauptverfasser: Bear, Mark F., Rittenhouse, Cynthia D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 83
container_title Journal of neurobiology
container_volume 41
creator Bear, Mark F.
Rittenhouse, Cynthia D.
description The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 83–91, 1999
doi_str_mv 10.1002/(SICI)1097-4695(199910)41:1<83::AID-NEU11>3.0.CO;2-Z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70784675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70784675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4281-2c9394874226f39dd80d87023ecda25dbd6a699cf334af0916338c04e442f5833</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpaNykf6HsKSSHdUYa7a7kmkLYpqkhqQ9NLrkMsqQFlfXKXXkp_ve1uyEUEnoamI_nZR7G5hymHEBcnv9Y1IsLDrrKZamLc6615nAh-YzPFc5mV4sv-ffrB84_4xSm9fKTyB_fsMnzwVs22WNEjoDymL1P6ScAaF2Id-yYQwGS62LC5nex9XZoTZ-tTAopa2Kfhc4Ndhtil8Umi-PUxXXoTGd9tmlN2gYbtrtTdtSYNvkPT_WEPXy9vq-_5bfLm0V9dZtbKRTPhdWopaqkEGWD2jkFTlUg0FtnROFWrjSl1rZBlKYBzUtEZUF6KUVTKMQTdjZyN338Nfi0pXVI1ret6XwcElVQKVlWxX7xfly0fUyp9w1t-rA2_Y440MEq0cEqHSTRQRKNVkly4qSQaG-V_lolJKB6SYIe99iPT_nDau3dP9BRIz4__ju0fvci9P-Zr0WODfwDzGSRGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70784675</pqid></control><display><type>article</type><title>Molecular basis for induction of ocular dominance plasticity</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Bear, Mark F. ; Rittenhouse, Cynthia D.</creator><creatorcontrib>Bear, Mark F. ; Rittenhouse, Cynthia D.</creatorcontrib><description>The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered. © 1999 John Wiley &amp; Sons, Inc. J Neurobiol 41: 83–91, 1999</description><identifier>ISSN: 0022-3034</identifier><identifier>EISSN: 1097-4695</identifier><identifier>DOI: 10.1002/(SICI)1097-4695(199910)41:1&lt;83::AID-NEU11&gt;3.0.CO;2-Z</identifier><identifier>PMID: 10504195</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Neural Inhibition - physiology ; Neuronal Plasticity - physiology ; Receptors, N-Methyl-D-Aspartate - physiology ; Vision, Monocular - physiology ; Visual Cortex - chemistry ; Visual Cortex - growth &amp; development ; Visual Cortex - physiology</subject><ispartof>Journal of neurobiology, 1999-10, Vol.41 (1), p.83-91</ispartof><rights>Copyright © 1999 John Wiley &amp; Sons, Inc.</rights><rights>Copyright 1999 John Wiley &amp; Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4281-2c9394874226f39dd80d87023ecda25dbd6a699cf334af0916338c04e442f5833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-4695%28199910%2941%3A1%3C83%3A%3AAID-NEU11%3E3.0.CO%3B2-Z$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-4695%28199910%2941%3A1%3C83%3A%3AAID-NEU11%3E3.0.CO%3B2-Z$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10504195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bear, Mark F.</creatorcontrib><creatorcontrib>Rittenhouse, Cynthia D.</creatorcontrib><title>Molecular basis for induction of ocular dominance plasticity</title><title>Journal of neurobiology</title><addtitle>J Neurobiol</addtitle><description>The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered. © 1999 John Wiley &amp; Sons, Inc. J Neurobiol 41: 83–91, 1999</description><subject>Animals</subject><subject>Neural Inhibition - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual Cortex - chemistry</subject><subject>Visual Cortex - growth &amp; development</subject><subject>Visual Cortex - physiology</subject><issn>0022-3034</issn><issn>1097-4695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1rGzEQhkVpaNykf6HsKSSHdUYa7a7kmkLYpqkhqQ9NLrkMsqQFlfXKXXkp_ve1uyEUEnoamI_nZR7G5hymHEBcnv9Y1IsLDrrKZamLc6615nAh-YzPFc5mV4sv-ffrB84_4xSm9fKTyB_fsMnzwVs22WNEjoDymL1P6ScAaF2Id-yYQwGS62LC5nex9XZoTZ-tTAopa2Kfhc4Ndhtil8Umi-PUxXXoTGd9tmlN2gYbtrtTdtSYNvkPT_WEPXy9vq-_5bfLm0V9dZtbKRTPhdWopaqkEGWD2jkFTlUg0FtnROFWrjSl1rZBlKYBzUtEZUF6KUVTKMQTdjZyN338Nfi0pXVI1ret6XwcElVQKVlWxX7xfly0fUyp9w1t-rA2_Y440MEq0cEqHSTRQRKNVkly4qSQaG-V_lolJKB6SYIe99iPT_nDau3dP9BRIz4__ju0fvci9P-Zr0WODfwDzGSRGA</recordid><startdate>199910</startdate><enddate>199910</enddate><creator>Bear, Mark F.</creator><creator>Rittenhouse, Cynthia D.</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199910</creationdate><title>Molecular basis for induction of ocular dominance plasticity</title><author>Bear, Mark F. ; Rittenhouse, Cynthia D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4281-2c9394874226f39dd80d87023ecda25dbd6a699cf334af0916338c04e442f5833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Neural Inhibition - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual Cortex - chemistry</topic><topic>Visual Cortex - growth &amp; development</topic><topic>Visual Cortex - physiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Bear, Mark F.</creatorcontrib><creatorcontrib>Rittenhouse, Cynthia D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bear, Mark F.</au><au>Rittenhouse, Cynthia D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis for induction of ocular dominance plasticity</atitle><jtitle>Journal of neurobiology</jtitle><addtitle>J Neurobiol</addtitle><date>1999-10</date><risdate>1999</risdate><volume>41</volume><issue>1</issue><spage>83</spage><epage>91</epage><pages>83-91</pages><issn>0022-3034</issn><eissn>1097-4695</eissn><abstract>The most dramatic example of experience‐dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered. © 1999 John Wiley &amp; Sons, Inc. J Neurobiol 41: 83–91, 1999</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10504195</pmid><doi>10.1002/(SICI)1097-4695(199910)41:1&lt;83::AID-NEU11&gt;3.0.CO;2-Z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3034
ispartof Journal of neurobiology, 1999-10, Vol.41 (1), p.83-91
issn 0022-3034
1097-4695
language eng
recordid cdi_proquest_miscellaneous_70784675
source MEDLINE; Wiley Free Content; Wiley Online Library All Journals
subjects Animals
Neural Inhibition - physiology
Neuronal Plasticity - physiology
Receptors, N-Methyl-D-Aspartate - physiology
Vision, Monocular - physiology
Visual Cortex - chemistry
Visual Cortex - growth & development
Visual Cortex - physiology
title Molecular basis for induction of ocular dominance plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20for%20induction%20of%20ocular%20dominance%20plasticity&rft.jtitle=Journal%20of%20neurobiology&rft.au=Bear,%20Mark%20F.&rft.date=1999-10&rft.volume=41&rft.issue=1&rft.spage=83&rft.epage=91&rft.pages=83-91&rft.issn=0022-3034&rft.eissn=1097-4695&rft_id=info:doi/10.1002/(SICI)1097-4695(199910)41:1%3C83::AID-NEU11%3E3.0.CO;2-Z&rft_dat=%3Cproquest_cross%3E70784675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70784675&rft_id=info:pmid/10504195&rfr_iscdi=true