ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095
Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2008-06, Vol.28 (6), p.1090-1103 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1103 |
---|---|
container_issue | 6 |
container_start_page | 1090 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 28 |
creator | Gáspár, Tamás Snipes, James A Busija, Anna R Kis, Béla Domoki, Ferenc Bari, Ferenc Busija, David W |
description | Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta. Long-term (3 days) treatment of neurons with BMS resulted in sustained mitochondrial depolarization, decreased basal ROS generation, and elevated ATP levels. This treatment also elicited almost complete protection against glutamate excitotoxicity, which could be abolished using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, but not with the superoxide dismutase (SOD) mimetic M40401. Long-term BMS treatment induced a PI3K-dependent increase in the expression and activity of catalase without affecting manganese SOD and copper/zinc-dependent SOD. Finally, the catalase inhibitor 3-aminotriazole dose-dependently antagonized the neuroprotective effect of BMS-induced PC. In summary, BMS depolarizes mitochondria without ROS generation, activates the PI3K-Akt pathway, improves ATP content, and increases catalase expression. These mechanisms appear to play important roles in the neuroprotective effect of BMS. |
doi_str_mv | 10.1038/sj.jcbfm.9600611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70751607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70751607</sourcerecordid><originalsourceid>FETCH-LOGICAL-n161t-3240790314c60ccb22994f74bd18a1f6e8e3a7fa29e3912c602603f73bc4c9b33</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWALgWh57CwgT2wp99qJHY9Q8RJFlShIMEWO44CrxClxUqn_nqAWlnOH8-kOh5AzhAkCT6_CcrI0eVlPlAAQiHtkjEmiIgko9skYmMRIyPR9RI5CWAJAypPkkIwwZcikisfk42W-iJwv7MoO4Tu6aq1pfOE613jnP6nz1Nu-bXyga6epNp1b69-SNiWtXdc8UfOlvbdVoPmG3jwvIlQIKjkhB6Wugj3d3WPydnf7On2IZvP7x-n1LPIosIs4i0Eq4BgbAcbkjCkVlzLOC0w1lsKmlmtZaqYsV8gGxATwUvLcxEblnB-Ty-3fVdt89zZ0We2CsVWlvW36kEmQCQqQA7zYwT6vbZGtWlfrdpP9jTGA8y3wuutb-w924_IfhqBqvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70751607</pqid></control><display><type>article</type><title>ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095</title><source>Access via SAGE</source><source>MEDLINE</source><creator>Gáspár, Tamás ; Snipes, James A ; Busija, Anna R ; Kis, Béla ; Domoki, Ferenc ; Bari, Ferenc ; Busija, David W</creator><creatorcontrib>Gáspár, Tamás ; Snipes, James A ; Busija, Anna R ; Kis, Béla ; Domoki, Ferenc ; Bari, Ferenc ; Busija, David W</creatorcontrib><description>Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta. Long-term (3 days) treatment of neurons with BMS resulted in sustained mitochondrial depolarization, decreased basal ROS generation, and elevated ATP levels. This treatment also elicited almost complete protection against glutamate excitotoxicity, which could be abolished using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, but not with the superoxide dismutase (SOD) mimetic M40401. Long-term BMS treatment induced a PI3K-dependent increase in the expression and activity of catalase without affecting manganese SOD and copper/zinc-dependent SOD. Finally, the catalase inhibitor 3-aminotriazole dose-dependently antagonized the neuroprotective effect of BMS-induced PC. In summary, BMS depolarizes mitochondria without ROS generation, activates the PI3K-Akt pathway, improves ATP content, and increases catalase expression. These mechanisms appear to play important roles in the neuroprotective effect of BMS.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/sj.jcbfm.9600611</identifier><identifier>PMID: 18212794</identifier><language>eng</language><publisher>United States</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Benzopyrans - pharmacology ; Calcium - metabolism ; Cells, Cultured ; Cytosol - drug effects ; Cytosol - metabolism ; Female ; Glutamic Acid - metabolism ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Homeostasis - drug effects ; Imidazoles - pharmacology ; Indoles - metabolism ; Ion Channel Gating - drug effects ; Mitochondria - drug effects ; Neurons - drug effects ; Neurons - metabolism ; Phosphatidylinositol 3-Kinases - antagonists & inhibitors ; Phosphatidylinositol 3-Kinases - metabolism ; Potassium Channels - metabolism ; Protein Kinase Inhibitors - pharmacology ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Time Factors ; Tissue Culture Techniques</subject><ispartof>Journal of cerebral blood flow and metabolism, 2008-06, Vol.28 (6), p.1090-1103</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18212794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gáspár, Tamás</creatorcontrib><creatorcontrib>Snipes, James A</creatorcontrib><creatorcontrib>Busija, Anna R</creatorcontrib><creatorcontrib>Kis, Béla</creatorcontrib><creatorcontrib>Domoki, Ferenc</creatorcontrib><creatorcontrib>Bari, Ferenc</creatorcontrib><creatorcontrib>Busija, David W</creatorcontrib><title>ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta. Long-term (3 days) treatment of neurons with BMS resulted in sustained mitochondrial depolarization, decreased basal ROS generation, and elevated ATP levels. This treatment also elicited almost complete protection against glutamate excitotoxicity, which could be abolished using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, but not with the superoxide dismutase (SOD) mimetic M40401. Long-term BMS treatment induced a PI3K-dependent increase in the expression and activity of catalase without affecting manganese SOD and copper/zinc-dependent SOD. Finally, the catalase inhibitor 3-aminotriazole dose-dependently antagonized the neuroprotective effect of BMS-induced PC. In summary, BMS depolarizes mitochondria without ROS generation, activates the PI3K-Akt pathway, improves ATP content, and increases catalase expression. These mechanisms appear to play important roles in the neuroprotective effect of BMS.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Benzopyrans - pharmacology</subject><subject>Calcium - metabolism</subject><subject>Cells, Cultured</subject><subject>Cytosol - drug effects</subject><subject>Cytosol - metabolism</subject><subject>Female</subject><subject>Glutamic Acid - metabolism</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Homeostasis - drug effects</subject><subject>Imidazoles - pharmacology</subject><subject>Indoles - metabolism</subject><subject>Ion Channel Gating - drug effects</subject><subject>Mitochondria - drug effects</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Potassium Channels - metabolism</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Time Factors</subject><subject>Tissue Culture Techniques</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUBWALgWh57CwgT2wp99qJHY9Q8RJFlShIMEWO44CrxClxUqn_nqAWlnOH8-kOh5AzhAkCT6_CcrI0eVlPlAAQiHtkjEmiIgko9skYmMRIyPR9RI5CWAJAypPkkIwwZcikisfk42W-iJwv7MoO4Tu6aq1pfOE613jnP6nz1Nu-bXyga6epNp1b69-SNiWtXdc8UfOlvbdVoPmG3jwvIlQIKjkhB6Wugj3d3WPydnf7On2IZvP7x-n1LPIosIs4i0Eq4BgbAcbkjCkVlzLOC0w1lsKmlmtZaqYsV8gGxATwUvLcxEblnB-Ty-3fVdt89zZ0We2CsVWlvW36kEmQCQqQA7zYwT6vbZGtWlfrdpP9jTGA8y3wuutb-w924_IfhqBqvA</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Gáspár, Tamás</creator><creator>Snipes, James A</creator><creator>Busija, Anna R</creator><creator>Kis, Béla</creator><creator>Domoki, Ferenc</creator><creator>Bari, Ferenc</creator><creator>Busija, David W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200806</creationdate><title>ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095</title><author>Gáspár, Tamás ; Snipes, James A ; Busija, Anna R ; Kis, Béla ; Domoki, Ferenc ; Bari, Ferenc ; Busija, David W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n161t-3240790314c60ccb22994f74bd18a1f6e8e3a7fa29e3912c602603f73bc4c9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Benzopyrans - pharmacology</topic><topic>Calcium - metabolism</topic><topic>Cells, Cultured</topic><topic>Cytosol - drug effects</topic><topic>Cytosol - metabolism</topic><topic>Female</topic><topic>Glutamic Acid - metabolism</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Homeostasis - drug effects</topic><topic>Imidazoles - pharmacology</topic><topic>Indoles - metabolism</topic><topic>Ion Channel Gating - drug effects</topic><topic>Mitochondria - drug effects</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Potassium Channels - metabolism</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Time Factors</topic><topic>Tissue Culture Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gáspár, Tamás</creatorcontrib><creatorcontrib>Snipes, James A</creatorcontrib><creatorcontrib>Busija, Anna R</creatorcontrib><creatorcontrib>Kis, Béla</creatorcontrib><creatorcontrib>Domoki, Ferenc</creatorcontrib><creatorcontrib>Bari, Ferenc</creatorcontrib><creatorcontrib>Busija, David W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gáspár, Tamás</au><au>Snipes, James A</au><au>Busija, Anna R</au><au>Kis, Béla</au><au>Domoki, Ferenc</au><au>Bari, Ferenc</au><au>Busija, David W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2008-06</date><risdate>2008</risdate><volume>28</volume><issue>6</issue><spage>1090</spage><epage>1103</epage><pages>1090-1103</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta. Long-term (3 days) treatment of neurons with BMS resulted in sustained mitochondrial depolarization, decreased basal ROS generation, and elevated ATP levels. This treatment also elicited almost complete protection against glutamate excitotoxicity, which could be abolished using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, but not with the superoxide dismutase (SOD) mimetic M40401. Long-term BMS treatment induced a PI3K-dependent increase in the expression and activity of catalase without affecting manganese SOD and copper/zinc-dependent SOD. Finally, the catalase inhibitor 3-aminotriazole dose-dependently antagonized the neuroprotective effect of BMS-induced PC. In summary, BMS depolarizes mitochondria without ROS generation, activates the PI3K-Akt pathway, improves ATP content, and increases catalase expression. These mechanisms appear to play important roles in the neuroprotective effect of BMS.</abstract><cop>United States</cop><pmid>18212794</pmid><doi>10.1038/sj.jcbfm.9600611</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2008-06, Vol.28 (6), p.1090-1103 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_proquest_miscellaneous_70751607 |
source | Access via SAGE; MEDLINE |
subjects | Adenosine Triphosphate - metabolism Animals Benzopyrans - pharmacology Calcium - metabolism Cells, Cultured Cytosol - drug effects Cytosol - metabolism Female Glutamic Acid - metabolism Glycogen Synthase Kinase 3 - metabolism Glycogen Synthase Kinase 3 beta Homeostasis - drug effects Imidazoles - pharmacology Indoles - metabolism Ion Channel Gating - drug effects Mitochondria - drug effects Neurons - drug effects Neurons - metabolism Phosphatidylinositol 3-Kinases - antagonists & inhibitors Phosphatidylinositol 3-Kinases - metabolism Potassium Channels - metabolism Protein Kinase Inhibitors - pharmacology Proto-Oncogene Proteins c-akt - metabolism Rats Rats, Sprague-Dawley Reactive Oxygen Species - metabolism Time Factors Tissue Culture Techniques |
title | ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ROS-independent%20preconditioning%20in%20neurons%20via%20activation%20of%20mitoK%20channels%20by%20BMS-191095&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=G%C3%A1sp%C3%A1r,%20Tam%C3%A1s&rft.date=2008-06&rft.volume=28&rft.issue=6&rft.spage=1090&rft.epage=1103&rft.pages=1090-1103&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1038/sj.jcbfm.9600611&rft_dat=%3Cproquest_pubme%3E70751607%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70751607&rft_id=info:pmid/18212794&rfr_iscdi=true |