ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095

Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2008-06, Vol.28 (6), p.1090-1103
Hauptverfasser: Gáspár, Tamás, Snipes, James A, Busija, Anna R, Kis, Béla, Domoki, Ferenc, Bari, Ferenc, Busija, David W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1103
container_issue 6
container_start_page 1090
container_title Journal of cerebral blood flow and metabolism
container_volume 28
creator Gáspár, Tamás
Snipes, James A
Busija, Anna R
Kis, Béla
Domoki, Ferenc
Bari, Ferenc
Busija, David W
description Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta. Long-term (3 days) treatment of neurons with BMS resulted in sustained mitochondrial depolarization, decreased basal ROS generation, and elevated ATP levels. This treatment also elicited almost complete protection against glutamate excitotoxicity, which could be abolished using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, but not with the superoxide dismutase (SOD) mimetic M40401. Long-term BMS treatment induced a PI3K-dependent increase in the expression and activity of catalase without affecting manganese SOD and copper/zinc-dependent SOD. Finally, the catalase inhibitor 3-aminotriazole dose-dependently antagonized the neuroprotective effect of BMS-induced PC. In summary, BMS depolarizes mitochondria without ROS generation, activates the PI3K-Akt pathway, improves ATP content, and increases catalase expression. These mechanisms appear to play important roles in the neuroprotective effect of BMS.
doi_str_mv 10.1038/sj.jcbfm.9600611
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70751607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70751607</sourcerecordid><originalsourceid>FETCH-LOGICAL-n161t-3240790314c60ccb22994f74bd18a1f6e8e3a7fa29e3912c602603f73bc4c9b33</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWALgWh57CwgT2wp99qJHY9Q8RJFlShIMEWO44CrxClxUqn_nqAWlnOH8-kOh5AzhAkCT6_CcrI0eVlPlAAQiHtkjEmiIgko9skYmMRIyPR9RI5CWAJAypPkkIwwZcikisfk42W-iJwv7MoO4Tu6aq1pfOE613jnP6nz1Nu-bXyga6epNp1b69-SNiWtXdc8UfOlvbdVoPmG3jwvIlQIKjkhB6Wugj3d3WPydnf7On2IZvP7x-n1LPIosIs4i0Eq4BgbAcbkjCkVlzLOC0w1lsKmlmtZaqYsV8gGxATwUvLcxEblnB-Ty-3fVdt89zZ0We2CsVWlvW36kEmQCQqQA7zYwT6vbZGtWlfrdpP9jTGA8y3wuutb-w924_IfhqBqvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70751607</pqid></control><display><type>article</type><title>ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095</title><source>Access via SAGE</source><source>MEDLINE</source><creator>Gáspár, Tamás ; Snipes, James A ; Busija, Anna R ; Kis, Béla ; Domoki, Ferenc ; Bari, Ferenc ; Busija, David W</creator><creatorcontrib>Gáspár, Tamás ; Snipes, James A ; Busija, Anna R ; Kis, Béla ; Domoki, Ferenc ; Bari, Ferenc ; Busija, David W</creatorcontrib><description>Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta. Long-term (3 days) treatment of neurons with BMS resulted in sustained mitochondrial depolarization, decreased basal ROS generation, and elevated ATP levels. This treatment also elicited almost complete protection against glutamate excitotoxicity, which could be abolished using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, but not with the superoxide dismutase (SOD) mimetic M40401. Long-term BMS treatment induced a PI3K-dependent increase in the expression and activity of catalase without affecting manganese SOD and copper/zinc-dependent SOD. Finally, the catalase inhibitor 3-aminotriazole dose-dependently antagonized the neuroprotective effect of BMS-induced PC. In summary, BMS depolarizes mitochondria without ROS generation, activates the PI3K-Akt pathway, improves ATP content, and increases catalase expression. These mechanisms appear to play important roles in the neuroprotective effect of BMS.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/sj.jcbfm.9600611</identifier><identifier>PMID: 18212794</identifier><language>eng</language><publisher>United States</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Benzopyrans - pharmacology ; Calcium - metabolism ; Cells, Cultured ; Cytosol - drug effects ; Cytosol - metabolism ; Female ; Glutamic Acid - metabolism ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Homeostasis - drug effects ; Imidazoles - pharmacology ; Indoles - metabolism ; Ion Channel Gating - drug effects ; Mitochondria - drug effects ; Neurons - drug effects ; Neurons - metabolism ; Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors ; Phosphatidylinositol 3-Kinases - metabolism ; Potassium Channels - metabolism ; Protein Kinase Inhibitors - pharmacology ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Time Factors ; Tissue Culture Techniques</subject><ispartof>Journal of cerebral blood flow and metabolism, 2008-06, Vol.28 (6), p.1090-1103</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18212794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gáspár, Tamás</creatorcontrib><creatorcontrib>Snipes, James A</creatorcontrib><creatorcontrib>Busija, Anna R</creatorcontrib><creatorcontrib>Kis, Béla</creatorcontrib><creatorcontrib>Domoki, Ferenc</creatorcontrib><creatorcontrib>Bari, Ferenc</creatorcontrib><creatorcontrib>Busija, David W</creatorcontrib><title>ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta. Long-term (3 days) treatment of neurons with BMS resulted in sustained mitochondrial depolarization, decreased basal ROS generation, and elevated ATP levels. This treatment also elicited almost complete protection against glutamate excitotoxicity, which could be abolished using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, but not with the superoxide dismutase (SOD) mimetic M40401. Long-term BMS treatment induced a PI3K-dependent increase in the expression and activity of catalase without affecting manganese SOD and copper/zinc-dependent SOD. Finally, the catalase inhibitor 3-aminotriazole dose-dependently antagonized the neuroprotective effect of BMS-induced PC. In summary, BMS depolarizes mitochondria without ROS generation, activates the PI3K-Akt pathway, improves ATP content, and increases catalase expression. These mechanisms appear to play important roles in the neuroprotective effect of BMS.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Benzopyrans - pharmacology</subject><subject>Calcium - metabolism</subject><subject>Cells, Cultured</subject><subject>Cytosol - drug effects</subject><subject>Cytosol - metabolism</subject><subject>Female</subject><subject>Glutamic Acid - metabolism</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Homeostasis - drug effects</subject><subject>Imidazoles - pharmacology</subject><subject>Indoles - metabolism</subject><subject>Ion Channel Gating - drug effects</subject><subject>Mitochondria - drug effects</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Potassium Channels - metabolism</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Time Factors</subject><subject>Tissue Culture Techniques</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUBWALgWh57CwgT2wp99qJHY9Q8RJFlShIMEWO44CrxClxUqn_nqAWlnOH8-kOh5AzhAkCT6_CcrI0eVlPlAAQiHtkjEmiIgko9skYmMRIyPR9RI5CWAJAypPkkIwwZcikisfk42W-iJwv7MoO4Tu6aq1pfOE613jnP6nz1Nu-bXyga6epNp1b69-SNiWtXdc8UfOlvbdVoPmG3jwvIlQIKjkhB6Wugj3d3WPydnf7On2IZvP7x-n1LPIosIs4i0Eq4BgbAcbkjCkVlzLOC0w1lsKmlmtZaqYsV8gGxATwUvLcxEblnB-Ty-3fVdt89zZ0We2CsVWlvW36kEmQCQqQA7zYwT6vbZGtWlfrdpP9jTGA8y3wuutb-w924_IfhqBqvA</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Gáspár, Tamás</creator><creator>Snipes, James A</creator><creator>Busija, Anna R</creator><creator>Kis, Béla</creator><creator>Domoki, Ferenc</creator><creator>Bari, Ferenc</creator><creator>Busija, David W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200806</creationdate><title>ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095</title><author>Gáspár, Tamás ; Snipes, James A ; Busija, Anna R ; Kis, Béla ; Domoki, Ferenc ; Bari, Ferenc ; Busija, David W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n161t-3240790314c60ccb22994f74bd18a1f6e8e3a7fa29e3912c602603f73bc4c9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Benzopyrans - pharmacology</topic><topic>Calcium - metabolism</topic><topic>Cells, Cultured</topic><topic>Cytosol - drug effects</topic><topic>Cytosol - metabolism</topic><topic>Female</topic><topic>Glutamic Acid - metabolism</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Homeostasis - drug effects</topic><topic>Imidazoles - pharmacology</topic><topic>Indoles - metabolism</topic><topic>Ion Channel Gating - drug effects</topic><topic>Mitochondria - drug effects</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Potassium Channels - metabolism</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Time Factors</topic><topic>Tissue Culture Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gáspár, Tamás</creatorcontrib><creatorcontrib>Snipes, James A</creatorcontrib><creatorcontrib>Busija, Anna R</creatorcontrib><creatorcontrib>Kis, Béla</creatorcontrib><creatorcontrib>Domoki, Ferenc</creatorcontrib><creatorcontrib>Bari, Ferenc</creatorcontrib><creatorcontrib>Busija, David W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gáspár, Tamás</au><au>Snipes, James A</au><au>Busija, Anna R</au><au>Kis, Béla</au><au>Domoki, Ferenc</au><au>Bari, Ferenc</au><au>Busija, David W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2008-06</date><risdate>2008</risdate><volume>28</volume><issue>6</issue><spage>1090</spage><epage>1103</epage><pages>1090-1103</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta. Long-term (3 days) treatment of neurons with BMS resulted in sustained mitochondrial depolarization, decreased basal ROS generation, and elevated ATP levels. This treatment also elicited almost complete protection against glutamate excitotoxicity, which could be abolished using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, but not with the superoxide dismutase (SOD) mimetic M40401. Long-term BMS treatment induced a PI3K-dependent increase in the expression and activity of catalase without affecting manganese SOD and copper/zinc-dependent SOD. Finally, the catalase inhibitor 3-aminotriazole dose-dependently antagonized the neuroprotective effect of BMS-induced PC. In summary, BMS depolarizes mitochondria without ROS generation, activates the PI3K-Akt pathway, improves ATP content, and increases catalase expression. These mechanisms appear to play important roles in the neuroprotective effect of BMS.</abstract><cop>United States</cop><pmid>18212794</pmid><doi>10.1038/sj.jcbfm.9600611</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2008-06, Vol.28 (6), p.1090-1103
issn 0271-678X
1559-7016
language eng
recordid cdi_proquest_miscellaneous_70751607
source Access via SAGE; MEDLINE
subjects Adenosine Triphosphate - metabolism
Animals
Benzopyrans - pharmacology
Calcium - metabolism
Cells, Cultured
Cytosol - drug effects
Cytosol - metabolism
Female
Glutamic Acid - metabolism
Glycogen Synthase Kinase 3 - metabolism
Glycogen Synthase Kinase 3 beta
Homeostasis - drug effects
Imidazoles - pharmacology
Indoles - metabolism
Ion Channel Gating - drug effects
Mitochondria - drug effects
Neurons - drug effects
Neurons - metabolism
Phosphatidylinositol 3-Kinases - antagonists & inhibitors
Phosphatidylinositol 3-Kinases - metabolism
Potassium Channels - metabolism
Protein Kinase Inhibitors - pharmacology
Proto-Oncogene Proteins c-akt - metabolism
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species - metabolism
Time Factors
Tissue Culture Techniques
title ROS-independent preconditioning in neurons via activation of mitoK channels by BMS-191095
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ROS-independent%20preconditioning%20in%20neurons%20via%20activation%20of%20mitoK%20channels%20by%20BMS-191095&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=G%C3%A1sp%C3%A1r,%20Tam%C3%A1s&rft.date=2008-06&rft.volume=28&rft.issue=6&rft.spage=1090&rft.epage=1103&rft.pages=1090-1103&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1038/sj.jcbfm.9600611&rft_dat=%3Cproquest_pubme%3E70751607%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70751607&rft_id=info:pmid/18212794&rfr_iscdi=true