Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae
Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2008-06, Vol.275 (11), p.2956-2964 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2964 |
---|---|
container_issue | 11 |
container_start_page | 2956 |
container_title | The FEBS journal |
container_volume | 275 |
creator | Jensen, Mette M. Christensen, Marianne S. Bonven, Bjarne Jensen, Torben H. |
description | Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly throughout the heat shock protein 104 gene (HSP104) transcription unit. The results show that, although histone H3 lacking amino acids 4–30 of its N‐terminal tail (H3Δ4–30) is normally deposited, reassembly of H3Δ4–40 is obliterated with an accompanying sustained transcription. On mutation of the histone chaperones Spt6p and Spt16p, but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redeposition and ongoing transcription is not required to prevent chromatin reassembly. |
doi_str_mv | 10.1111/j.1742-4658.2008.06451.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70733725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1478175831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4451-8c3a19c8241333db9557444513d0d413f62efaa8d34e71b9dee9a3656dac2f193</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpaT7av1BED7mtI1mSPy6FJiRtIFBoWuhNzErjXW1tayPZSfZSAv2n-SWVs0sCOXUuM8w88yLNSwjlLOMpjlcZL2U-k4WqspyxKmOFVDy7e0X2nwavn2r5a48cxLhiTChZ12_JHq-kVEzyffLnO16PLmCH_RBp4wM1y-A7GFxPA0KM2M3bDbVjcP2CDgH6aIJbD8730FLrb_uAi7GFqUF9Q4EuEQYal978pgvskSahKzBmCUl2YzA-3P81GPDGRQf4jrxpoI34fpcPyc_zsx-nX2eX375cnH6-nJn0UD6rjABemyqXXAhh57VSpZwmwjKbek2RYwNQWSGx5PPaItYgClVYMHnDa3FIjra66-CvR4yD7lw02LbQox-jLlkpRJmrBH58Aa78GNJfo87TwRRT1QRVW8gEH2PARq-D6yBsNGd6Mkiv9HR7PfmgJ4P0o0H6Lq1-2OmP8w7t8-LOkQR82gK3rsXNfwvr87OTq6kU_wCkLKKX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204150585</pqid></control><display><type>article</type><title>Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Jensen, Mette M. ; Christensen, Marianne S. ; Bonven, Bjarne ; Jensen, Torben H.</creator><creatorcontrib>Jensen, Mette M. ; Christensen, Marianne S. ; Bonven, Bjarne ; Jensen, Torben H.</creatorcontrib><description>Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly throughout the heat shock protein 104 gene (HSP104) transcription unit. The results show that, although histone H3 lacking amino acids 4–30 of its N‐terminal tail (H3Δ4–30) is normally deposited, reassembly of H3Δ4–40 is obliterated with an accompanying sustained transcription. On mutation of the histone chaperones Spt6p and Spt16p, but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redeposition and ongoing transcription is not required to prevent chromatin reassembly.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2008.06451.x</identifier><identifier>PMID: 18445041</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino acids ; Biochemistry ; Chromatin ; Chromatin - chemistry ; DNA - chemistry ; Gene Deletion ; Gene Expression Regulation ; Gene Expression Regulation, Fungal ; Genetics ; Genotype ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; histone chaperones ; histone reassembly ; Histones - chemistry ; HSP104 ; In Situ Hybridization, Fluorescence ; Mutation ; Protein Structure, Tertiary ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; SPT16 ; SPT6 ; Time Factors ; Transcription, Genetic</subject><ispartof>The FEBS journal, 2008-06, Vol.275 (11), p.2956-2964</ispartof><rights>2008 The Authors Journal compilation © 2008 FEBS</rights><rights>Journal compilation © 2008 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4451-8c3a19c8241333db9557444513d0d413f62efaa8d34e71b9dee9a3656dac2f193</citedby><cites>FETCH-LOGICAL-c4451-8c3a19c8241333db9557444513d0d413f62efaa8d34e71b9dee9a3656dac2f193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2008.06451.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2008.06451.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18445041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Mette M.</creatorcontrib><creatorcontrib>Christensen, Marianne S.</creatorcontrib><creatorcontrib>Bonven, Bjarne</creatorcontrib><creatorcontrib>Jensen, Torben H.</creatorcontrib><title>Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly throughout the heat shock protein 104 gene (HSP104) transcription unit. The results show that, although histone H3 lacking amino acids 4–30 of its N‐terminal tail (H3Δ4–30) is normally deposited, reassembly of H3Δ4–40 is obliterated with an accompanying sustained transcription. On mutation of the histone chaperones Spt6p and Spt16p, but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redeposition and ongoing transcription is not required to prevent chromatin reassembly.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>DNA - chemistry</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetics</subject><subject>Genotype</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>histone chaperones</subject><subject>histone reassembly</subject><subject>Histones - chemistry</subject><subject>HSP104</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Mutation</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>SPT16</subject><subject>SPT6</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpaT7av1BED7mtI1mSPy6FJiRtIFBoWuhNzErjXW1tayPZSfZSAv2n-SWVs0sCOXUuM8w88yLNSwjlLOMpjlcZL2U-k4WqspyxKmOFVDy7e0X2nwavn2r5a48cxLhiTChZ12_JHq-kVEzyffLnO16PLmCH_RBp4wM1y-A7GFxPA0KM2M3bDbVjcP2CDgH6aIJbD8730FLrb_uAi7GFqUF9Q4EuEQYal978pgvskSahKzBmCUl2YzA-3P81GPDGRQf4jrxpoI34fpcPyc_zsx-nX2eX375cnH6-nJn0UD6rjABemyqXXAhh57VSpZwmwjKbek2RYwNQWSGx5PPaItYgClVYMHnDa3FIjra66-CvR4yD7lw02LbQox-jLlkpRJmrBH58Aa78GNJfo87TwRRT1QRVW8gEH2PARq-D6yBsNGd6Mkiv9HR7PfmgJ4P0o0H6Lq1-2OmP8w7t8-LOkQR82gK3rsXNfwvr87OTq6kU_wCkLKKX</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Jensen, Mette M.</creator><creator>Christensen, Marianne S.</creator><creator>Bonven, Bjarne</creator><creator>Jensen, Torben H.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200806</creationdate><title>Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae</title><author>Jensen, Mette M. ; Christensen, Marianne S. ; Bonven, Bjarne ; Jensen, Torben H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4451-8c3a19c8241333db9557444513d0d413f62efaa8d34e71b9dee9a3656dac2f193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>DNA - chemistry</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetics</topic><topic>Genotype</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>histone chaperones</topic><topic>histone reassembly</topic><topic>Histones - chemistry</topic><topic>HSP104</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Mutation</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>SPT16</topic><topic>SPT6</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Mette M.</creatorcontrib><creatorcontrib>Christensen, Marianne S.</creatorcontrib><creatorcontrib>Bonven, Bjarne</creatorcontrib><creatorcontrib>Jensen, Torben H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Mette M.</au><au>Christensen, Marianne S.</au><au>Bonven, Bjarne</au><au>Jensen, Torben H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2008-06</date><risdate>2008</risdate><volume>275</volume><issue>11</issue><spage>2956</spage><epage>2964</epage><pages>2956-2964</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly throughout the heat shock protein 104 gene (HSP104) transcription unit. The results show that, although histone H3 lacking amino acids 4–30 of its N‐terminal tail (H3Δ4–30) is normally deposited, reassembly of H3Δ4–40 is obliterated with an accompanying sustained transcription. On mutation of the histone chaperones Spt6p and Spt16p, but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redeposition and ongoing transcription is not required to prevent chromatin reassembly.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18445041</pmid><doi>10.1111/j.1742-4658.2008.06451.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2008-06, Vol.275 (11), p.2956-2964 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_70733725 |
source | MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | Amino acids Biochemistry Chromatin Chromatin - chemistry DNA - chemistry Gene Deletion Gene Expression Regulation Gene Expression Regulation, Fungal Genetics Genotype Heat-Shock Proteins - chemistry Heat-Shock Proteins - genetics histone chaperones histone reassembly Histones - chemistry HSP104 In Situ Hybridization, Fluorescence Mutation Protein Structure, Tertiary Proteins Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics SPT16 SPT6 Time Factors Transcription, Genetic |
title | Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirements%20for%20chromatin%20reassembly%20during%20transcriptional%20downregulation%20of%20a%20heat%20shock%20gene%20in%20Saccharomyces%E2%80%83cerevisiae&rft.jtitle=The%20FEBS%20journal&rft.au=Jensen,%20Mette%20M.&rft.date=2008-06&rft.volume=275&rft.issue=11&rft.spage=2956&rft.epage=2964&rft.pages=2956-2964&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2008.06451.x&rft_dat=%3Cproquest_cross%3E1478175831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204150585&rft_id=info:pmid/18445041&rfr_iscdi=true |