Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae

Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2008-06, Vol.275 (11), p.2956-2964
Hauptverfasser: Jensen, Mette M., Christensen, Marianne S., Bonven, Bjarne, Jensen, Torben H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2964
container_issue 11
container_start_page 2956
container_title The FEBS journal
container_volume 275
creator Jensen, Mette M.
Christensen, Marianne S.
Bonven, Bjarne
Jensen, Torben H.
description Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly throughout the heat shock protein 104 gene (HSP104) transcription unit. The results show that, although histone H3 lacking amino acids 4–30 of its N‐terminal tail (H3Δ4–30) is normally deposited, reassembly of H3Δ4–40 is obliterated with an accompanying sustained transcription. On mutation of the histone chaperones Spt6p and Spt16p, but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redeposition and ongoing transcription is not required to prevent chromatin reassembly.
doi_str_mv 10.1111/j.1742-4658.2008.06451.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70733725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1478175831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4451-8c3a19c8241333db9557444513d0d413f62efaa8d34e71b9dee9a3656dac2f193</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpaT7av1BED7mtI1mSPy6FJiRtIFBoWuhNzErjXW1tayPZSfZSAv2n-SWVs0sCOXUuM8w88yLNSwjlLOMpjlcZL2U-k4WqspyxKmOFVDy7e0X2nwavn2r5a48cxLhiTChZ12_JHq-kVEzyffLnO16PLmCH_RBp4wM1y-A7GFxPA0KM2M3bDbVjcP2CDgH6aIJbD8730FLrb_uAi7GFqUF9Q4EuEQYal978pgvskSahKzBmCUl2YzA-3P81GPDGRQf4jrxpoI34fpcPyc_zsx-nX2eX375cnH6-nJn0UD6rjABemyqXXAhh57VSpZwmwjKbek2RYwNQWSGx5PPaItYgClVYMHnDa3FIjra66-CvR4yD7lw02LbQox-jLlkpRJmrBH58Aa78GNJfo87TwRRT1QRVW8gEH2PARq-D6yBsNGd6Mkiv9HR7PfmgJ4P0o0H6Lq1-2OmP8w7t8-LOkQR82gK3rsXNfwvr87OTq6kU_wCkLKKX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204150585</pqid></control><display><type>article</type><title>Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Jensen, Mette M. ; Christensen, Marianne S. ; Bonven, Bjarne ; Jensen, Torben H.</creator><creatorcontrib>Jensen, Mette M. ; Christensen, Marianne S. ; Bonven, Bjarne ; Jensen, Torben H.</creatorcontrib><description>Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly throughout the heat shock protein 104 gene (HSP104) transcription unit. The results show that, although histone H3 lacking amino acids 4–30 of its N‐terminal tail (H3Δ4–30) is normally deposited, reassembly of H3Δ4–40 is obliterated with an accompanying sustained transcription. On mutation of the histone chaperones Spt6p and Spt16p, but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redeposition and ongoing transcription is not required to prevent chromatin reassembly.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2008.06451.x</identifier><identifier>PMID: 18445041</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino acids ; Biochemistry ; Chromatin ; Chromatin - chemistry ; DNA - chemistry ; Gene Deletion ; Gene Expression Regulation ; Gene Expression Regulation, Fungal ; Genetics ; Genotype ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; histone chaperones ; histone reassembly ; Histones - chemistry ; HSP104 ; In Situ Hybridization, Fluorescence ; Mutation ; Protein Structure, Tertiary ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; SPT16 ; SPT6 ; Time Factors ; Transcription, Genetic</subject><ispartof>The FEBS journal, 2008-06, Vol.275 (11), p.2956-2964</ispartof><rights>2008 The Authors Journal compilation © 2008 FEBS</rights><rights>Journal compilation © 2008 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4451-8c3a19c8241333db9557444513d0d413f62efaa8d34e71b9dee9a3656dac2f193</citedby><cites>FETCH-LOGICAL-c4451-8c3a19c8241333db9557444513d0d413f62efaa8d34e71b9dee9a3656dac2f193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2008.06451.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2008.06451.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18445041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Mette M.</creatorcontrib><creatorcontrib>Christensen, Marianne S.</creatorcontrib><creatorcontrib>Bonven, Bjarne</creatorcontrib><creatorcontrib>Jensen, Torben H.</creatorcontrib><title>Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly throughout the heat shock protein 104 gene (HSP104) transcription unit. The results show that, although histone H3 lacking amino acids 4–30 of its N‐terminal tail (H3Δ4–30) is normally deposited, reassembly of H3Δ4–40 is obliterated with an accompanying sustained transcription. On mutation of the histone chaperones Spt6p and Spt16p, but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redeposition and ongoing transcription is not required to prevent chromatin reassembly.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>DNA - chemistry</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetics</subject><subject>Genotype</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>histone chaperones</subject><subject>histone reassembly</subject><subject>Histones - chemistry</subject><subject>HSP104</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Mutation</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>SPT16</subject><subject>SPT6</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpaT7av1BED7mtI1mSPy6FJiRtIFBoWuhNzErjXW1tayPZSfZSAv2n-SWVs0sCOXUuM8w88yLNSwjlLOMpjlcZL2U-k4WqspyxKmOFVDy7e0X2nwavn2r5a48cxLhiTChZ12_JHq-kVEzyffLnO16PLmCH_RBp4wM1y-A7GFxPA0KM2M3bDbVjcP2CDgH6aIJbD8730FLrb_uAi7GFqUF9Q4EuEQYal978pgvskSahKzBmCUl2YzA-3P81GPDGRQf4jrxpoI34fpcPyc_zsx-nX2eX375cnH6-nJn0UD6rjABemyqXXAhh57VSpZwmwjKbek2RYwNQWSGx5PPaItYgClVYMHnDa3FIjra66-CvR4yD7lw02LbQox-jLlkpRJmrBH58Aa78GNJfo87TwRRT1QRVW8gEH2PARq-D6yBsNGd6Mkiv9HR7PfmgJ4P0o0H6Lq1-2OmP8w7t8-LOkQR82gK3rsXNfwvr87OTq6kU_wCkLKKX</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Jensen, Mette M.</creator><creator>Christensen, Marianne S.</creator><creator>Bonven, Bjarne</creator><creator>Jensen, Torben H.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200806</creationdate><title>Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae</title><author>Jensen, Mette M. ; Christensen, Marianne S. ; Bonven, Bjarne ; Jensen, Torben H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4451-8c3a19c8241333db9557444513d0d413f62efaa8d34e71b9dee9a3656dac2f193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>DNA - chemistry</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetics</topic><topic>Genotype</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>histone chaperones</topic><topic>histone reassembly</topic><topic>Histones - chemistry</topic><topic>HSP104</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Mutation</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>SPT16</topic><topic>SPT6</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Mette M.</creatorcontrib><creatorcontrib>Christensen, Marianne S.</creatorcontrib><creatorcontrib>Bonven, Bjarne</creatorcontrib><creatorcontrib>Jensen, Torben H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Mette M.</au><au>Christensen, Marianne S.</au><au>Bonven, Bjarne</au><au>Jensen, Torben H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2008-06</date><risdate>2008</risdate><volume>275</volume><issue>11</issue><spage>2956</spage><epage>2964</epage><pages>2956-2964</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by the massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. In this article, we identify determinants of this reassembly throughout the heat shock protein 104 gene (HSP104) transcription unit. The results show that, although histone H3 lacking amino acids 4–30 of its N‐terminal tail (H3Δ4–30) is normally deposited, reassembly of H3Δ4–40 is obliterated with an accompanying sustained transcription. On mutation of the histone chaperones Spt6p and Spt16p, but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redeposition and ongoing transcription is not required to prevent chromatin reassembly.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18445041</pmid><doi>10.1111/j.1742-4658.2008.06451.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2008-06, Vol.275 (11), p.2956-2964
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_70733725
source MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Amino acids
Biochemistry
Chromatin
Chromatin - chemistry
DNA - chemistry
Gene Deletion
Gene Expression Regulation
Gene Expression Regulation, Fungal
Genetics
Genotype
Heat-Shock Proteins - chemistry
Heat-Shock Proteins - genetics
histone chaperones
histone reassembly
Histones - chemistry
HSP104
In Situ Hybridization, Fluorescence
Mutation
Protein Structure, Tertiary
Proteins
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
SPT16
SPT6
Time Factors
Transcription, Genetic
title Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirements%20for%20chromatin%20reassembly%20during%20transcriptional%20downregulation%20of%20a%20heat%20shock%20gene%20in%20Saccharomyces%E2%80%83cerevisiae&rft.jtitle=The%20FEBS%20journal&rft.au=Jensen,%20Mette%20M.&rft.date=2008-06&rft.volume=275&rft.issue=11&rft.spage=2956&rft.epage=2964&rft.pages=2956-2964&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2008.06451.x&rft_dat=%3Cproquest_cross%3E1478175831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204150585&rft_id=info:pmid/18445041&rfr_iscdi=true