Morphine enhances purine nucleotide catabolism in vivo and in vitro
Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase‐rap method, adenosine deaminase...
Gespeichert in:
Veröffentlicht in: | Acta pharmacologica Sinica 2007-08, Vol.28 (8), p.1105-1115 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1115 |
---|---|
container_issue | 8 |
container_start_page | 1105 |
container_title | Acta pharmacologica Sinica |
container_volume | 28 |
creator | LIU, Chang LIU, Jian‐kai KAN, Mu‐jie GAO, Lin FU, Hai‐ying ZHOU, Hang HONG, Min |
description | Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase‐rap method, adenosine deaminase (ADA) and xanthine oxidase (XO) in the plasma and tissues were measured by the ADA and XO test kit. RT‐PCR and RT‐PCR‐Southern blotting were used to examine the relative amount of ADA and XO gene transcripts in tissues and C6 cells. Results: (i) the concentration of plasma uric acid in the morphine‐administered group was significantly higher (P < 0.05) than the control group; (ii) during morphine administration and withdrawal periods, the ADA and XO concentrations in the plasma increased significantly (P < 0.05); (iii) the amount of ADA and XO in the parietal lobe, liver, small intestine, and skeletal muscles of the morphine‐administered groups increased, while the level of ADA and XO in those tissues of the withdrawal groups decreased; (iv) the transcripts of the ADA and XO genes in the parietal lobe, liver, small intestine, and skeletal muscles were higher in the morphine‐administered group. The expression of the ADA and XO genes in those tissues returned to the control level during morphine withdrawal, with the exception of the skeletal muscles; and (v) the upregulation of the expression of the ADA and XO genes induced by morphine treatment could be reversed by naloxone. Conclusion: The effects of morphine on purine nucleotide metabolism might be an important, new biochemical pharmacological mechanism of morphine action. |
doi_str_mv | 10.1111/j.1745-7254.2007.00592.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70733080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19794683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4752-747bf844bb3249c9d73702a77e4fadf9e5a0f7aa28f3233c2af4dd391daa4d1f3</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMojq-_IMWFu9abR-e2Cxcy-AJFQV2HtEmYDp1mTKY6_ntTZ1Bwo9nkhHz3kJxDSEIho3GdzTKKIk-R5SJjAJgB5CXLVltk7_tiO-ox0lRAwUdkP4QZAGeclrtkRHEsQCDskcm984tp05nEdFPV1SYki94P566vW-OWjTZJrZaqcm0T5knTJW_Nm0tUp9d66d0h2bGqDeZosx-Ql6vL58lNevdwfTu5uEtrgTlLUWBlCyGqijNR1qVGjsAUohFWaVuaXIFFpVhh4zt5zZQVWvOSaqWEppYfkNO178K7196EpZw3oTZtqzrj-iARkHMo4E-QlliKccEjePILnLned_ETklEOjNKcRahYQ7V3IXhj5cI3c-U_JAU51CFnckhdDqnLoQ75VYdcxdHjjX9fzY3-GdzkH4HzNfDetObj38by4vHmKSr-CWV-mCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213021152</pqid></control><display><type>article</type><title>Morphine enhances purine nucleotide catabolism in vivo and in vitro</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>LIU, Chang ; LIU, Jian‐kai ; KAN, Mu‐jie ; GAO, Lin ; FU, Hai‐ying ; ZHOU, Hang ; HONG, Min</creator><creatorcontrib>LIU, Chang ; LIU, Jian‐kai ; KAN, Mu‐jie ; GAO, Lin ; FU, Hai‐ying ; ZHOU, Hang ; HONG, Min</creatorcontrib><description>Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase‐rap method, adenosine deaminase (ADA) and xanthine oxidase (XO) in the plasma and tissues were measured by the ADA and XO test kit. RT‐PCR and RT‐PCR‐Southern blotting were used to examine the relative amount of ADA and XO gene transcripts in tissues and C6 cells. Results: (i) the concentration of plasma uric acid in the morphine‐administered group was significantly higher (P < 0.05) than the control group; (ii) during morphine administration and withdrawal periods, the ADA and XO concentrations in the plasma increased significantly (P < 0.05); (iii) the amount of ADA and XO in the parietal lobe, liver, small intestine, and skeletal muscles of the morphine‐administered groups increased, while the level of ADA and XO in those tissues of the withdrawal groups decreased; (iv) the transcripts of the ADA and XO genes in the parietal lobe, liver, small intestine, and skeletal muscles were higher in the morphine‐administered group. The expression of the ADA and XO genes in those tissues returned to the control level during morphine withdrawal, with the exception of the skeletal muscles; and (v) the upregulation of the expression of the ADA and XO genes induced by morphine treatment could be reversed by naloxone. Conclusion: The effects of morphine on purine nucleotide metabolism might be an important, new biochemical pharmacological mechanism of morphine action.</description><identifier>ISSN: 1671-4083</identifier><identifier>EISSN: 1745-7254</identifier><identifier>DOI: 10.1111/j.1745-7254.2007.00592.x</identifier><identifier>PMID: 17640470</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>adenosine deaminase ; Adenosine Deaminase - analysis ; Adenosine Deaminase - genetics ; Animals ; Blood Urea Nitrogen ; Cell Line, Tumor ; Female ; morphine ; Morphine - pharmacology ; purine nucleotide ; Purine Nucleotides - metabolism ; Rats ; Rats, Wistar ; RNA, Messenger - analysis ; uric acid ; Uric Acid - blood ; xanthine oxidase ; Xanthine Oxidase - analysis ; Xanthine Oxidase - genetics</subject><ispartof>Acta pharmacologica Sinica, 2007-08, Vol.28 (8), p.1105-1115</ispartof><rights>Copyright Nature Publishing Group Aug 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4752-747bf844bb3249c9d73702a77e4fadf9e5a0f7aa28f3233c2af4dd391daa4d1f3</citedby><cites>FETCH-LOGICAL-c4752-747bf844bb3249c9d73702a77e4fadf9e5a0f7aa28f3233c2af4dd391daa4d1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1745-7254.2007.00592.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1745-7254.2007.00592.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17640470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIU, Chang</creatorcontrib><creatorcontrib>LIU, Jian‐kai</creatorcontrib><creatorcontrib>KAN, Mu‐jie</creatorcontrib><creatorcontrib>GAO, Lin</creatorcontrib><creatorcontrib>FU, Hai‐ying</creatorcontrib><creatorcontrib>ZHOU, Hang</creatorcontrib><creatorcontrib>HONG, Min</creatorcontrib><title>Morphine enhances purine nucleotide catabolism in vivo and in vitro</title><title>Acta pharmacologica Sinica</title><addtitle>Acta Pharmacol Sin</addtitle><description>Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase‐rap method, adenosine deaminase (ADA) and xanthine oxidase (XO) in the plasma and tissues were measured by the ADA and XO test kit. RT‐PCR and RT‐PCR‐Southern blotting were used to examine the relative amount of ADA and XO gene transcripts in tissues and C6 cells. Results: (i) the concentration of plasma uric acid in the morphine‐administered group was significantly higher (P < 0.05) than the control group; (ii) during morphine administration and withdrawal periods, the ADA and XO concentrations in the plasma increased significantly (P < 0.05); (iii) the amount of ADA and XO in the parietal lobe, liver, small intestine, and skeletal muscles of the morphine‐administered groups increased, while the level of ADA and XO in those tissues of the withdrawal groups decreased; (iv) the transcripts of the ADA and XO genes in the parietal lobe, liver, small intestine, and skeletal muscles were higher in the morphine‐administered group. The expression of the ADA and XO genes in those tissues returned to the control level during morphine withdrawal, with the exception of the skeletal muscles; and (v) the upregulation of the expression of the ADA and XO genes induced by morphine treatment could be reversed by naloxone. Conclusion: The effects of morphine on purine nucleotide metabolism might be an important, new biochemical pharmacological mechanism of morphine action.</description><subject>adenosine deaminase</subject><subject>Adenosine Deaminase - analysis</subject><subject>Adenosine Deaminase - genetics</subject><subject>Animals</subject><subject>Blood Urea Nitrogen</subject><subject>Cell Line, Tumor</subject><subject>Female</subject><subject>morphine</subject><subject>Morphine - pharmacology</subject><subject>purine nucleotide</subject><subject>Purine Nucleotides - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>RNA, Messenger - analysis</subject><subject>uric acid</subject><subject>Uric Acid - blood</subject><subject>xanthine oxidase</subject><subject>Xanthine Oxidase - analysis</subject><subject>Xanthine Oxidase - genetics</subject><issn>1671-4083</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtLxDAUhYMojq-_IMWFu9abR-e2Cxcy-AJFQV2HtEmYDp1mTKY6_ntTZ1Bwo9nkhHz3kJxDSEIho3GdzTKKIk-R5SJjAJgB5CXLVltk7_tiO-ox0lRAwUdkP4QZAGeclrtkRHEsQCDskcm984tp05nEdFPV1SYki94P566vW-OWjTZJrZaqcm0T5knTJW_Nm0tUp9d66d0h2bGqDeZosx-Ql6vL58lNevdwfTu5uEtrgTlLUWBlCyGqijNR1qVGjsAUohFWaVuaXIFFpVhh4zt5zZQVWvOSaqWEppYfkNO178K7196EpZw3oTZtqzrj-iARkHMo4E-QlliKccEjePILnLned_ETklEOjNKcRahYQ7V3IXhj5cI3c-U_JAU51CFnckhdDqnLoQ75VYdcxdHjjX9fzY3-GdzkH4HzNfDetObj38by4vHmKSr-CWV-mCw</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>LIU, Chang</creator><creator>LIU, Jian‐kai</creator><creator>KAN, Mu‐jie</creator><creator>GAO, Lin</creator><creator>FU, Hai‐ying</creator><creator>ZHOU, Hang</creator><creator>HONG, Min</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>200708</creationdate><title>Morphine enhances purine nucleotide catabolism in vivo and in vitro</title><author>LIU, Chang ; LIU, Jian‐kai ; KAN, Mu‐jie ; GAO, Lin ; FU, Hai‐ying ; ZHOU, Hang ; HONG, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4752-747bf844bb3249c9d73702a77e4fadf9e5a0f7aa28f3233c2af4dd391daa4d1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>adenosine deaminase</topic><topic>Adenosine Deaminase - analysis</topic><topic>Adenosine Deaminase - genetics</topic><topic>Animals</topic><topic>Blood Urea Nitrogen</topic><topic>Cell Line, Tumor</topic><topic>Female</topic><topic>morphine</topic><topic>Morphine - pharmacology</topic><topic>purine nucleotide</topic><topic>Purine Nucleotides - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>RNA, Messenger - analysis</topic><topic>uric acid</topic><topic>Uric Acid - blood</topic><topic>xanthine oxidase</topic><topic>Xanthine Oxidase - analysis</topic><topic>Xanthine Oxidase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, Chang</creatorcontrib><creatorcontrib>LIU, Jian‐kai</creatorcontrib><creatorcontrib>KAN, Mu‐jie</creatorcontrib><creatorcontrib>GAO, Lin</creatorcontrib><creatorcontrib>FU, Hai‐ying</creatorcontrib><creatorcontrib>ZHOU, Hang</creatorcontrib><creatorcontrib>HONG, Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta pharmacologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, Chang</au><au>LIU, Jian‐kai</au><au>KAN, Mu‐jie</au><au>GAO, Lin</au><au>FU, Hai‐ying</au><au>ZHOU, Hang</au><au>HONG, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphine enhances purine nucleotide catabolism in vivo and in vitro</atitle><jtitle>Acta pharmacologica Sinica</jtitle><addtitle>Acta Pharmacol Sin</addtitle><date>2007-08</date><risdate>2007</risdate><volume>28</volume><issue>8</issue><spage>1105</spage><epage>1115</epage><pages>1105-1115</pages><issn>1671-4083</issn><eissn>1745-7254</eissn><abstract>Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase‐rap method, adenosine deaminase (ADA) and xanthine oxidase (XO) in the plasma and tissues were measured by the ADA and XO test kit. RT‐PCR and RT‐PCR‐Southern blotting were used to examine the relative amount of ADA and XO gene transcripts in tissues and C6 cells. Results: (i) the concentration of plasma uric acid in the morphine‐administered group was significantly higher (P < 0.05) than the control group; (ii) during morphine administration and withdrawal periods, the ADA and XO concentrations in the plasma increased significantly (P < 0.05); (iii) the amount of ADA and XO in the parietal lobe, liver, small intestine, and skeletal muscles of the morphine‐administered groups increased, while the level of ADA and XO in those tissues of the withdrawal groups decreased; (iv) the transcripts of the ADA and XO genes in the parietal lobe, liver, small intestine, and skeletal muscles were higher in the morphine‐administered group. The expression of the ADA and XO genes in those tissues returned to the control level during morphine withdrawal, with the exception of the skeletal muscles; and (v) the upregulation of the expression of the ADA and XO genes induced by morphine treatment could be reversed by naloxone. Conclusion: The effects of morphine on purine nucleotide metabolism might be an important, new biochemical pharmacological mechanism of morphine action.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>17640470</pmid><doi>10.1111/j.1745-7254.2007.00592.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-4083 |
ispartof | Acta pharmacologica Sinica, 2007-08, Vol.28 (8), p.1105-1115 |
issn | 1671-4083 1745-7254 |
language | eng |
recordid | cdi_proquest_miscellaneous_70733080 |
source | MEDLINE; Wiley Online Library All Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | adenosine deaminase Adenosine Deaminase - analysis Adenosine Deaminase - genetics Animals Blood Urea Nitrogen Cell Line, Tumor Female morphine Morphine - pharmacology purine nucleotide Purine Nucleotides - metabolism Rats Rats, Wistar RNA, Messenger - analysis uric acid Uric Acid - blood xanthine oxidase Xanthine Oxidase - analysis Xanthine Oxidase - genetics |
title | Morphine enhances purine nucleotide catabolism in vivo and in vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphine%20enhances%20purine%20nucleotide%20catabolism%20in%20vivo%20and%20in%20vitro&rft.jtitle=Acta%20pharmacologica%20Sinica&rft.au=LIU,%20Chang&rft.date=2007-08&rft.volume=28&rft.issue=8&rft.spage=1105&rft.epage=1115&rft.pages=1105-1115&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/10.1111/j.1745-7254.2007.00592.x&rft_dat=%3Cproquest_cross%3E19794683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213021152&rft_id=info:pmid/17640470&rfr_iscdi=true |