On Estimating the Exponent of Power-Law Frequency Distributions
Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up f...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2008-04, Vol.89 (4), p.905-912 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 912 |
---|---|
container_issue | 4 |
container_start_page | 905 |
container_title | Ecology (Durham) |
container_volume | 89 |
creator | White, Ethan P. Enquist, Brian J. Green, Jessica L. |
description | Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited. |
doi_str_mv | 10.1890/07-1288.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70731663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27651627</jstor_id><sourcerecordid>27651627</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3345-a5d5a5dc3711a9bfd89b4b451278b9829771baa3cd75ff6cb2e5b1da25df15a93</originalsourceid><addsrcrecordid>eNqFkcFOwzAMhiMEYmNw4AFAFQduhThpmuSE0OgAadI4wIFTlLQptNra0aQae3sybYDEBUuWD_5-y_6N0CngKxASX2MeAxHiCvbQECSVsQSO99EQYyCxTJkYoCPnahwCEnGIBiASAQzoEN3MmihzvlpoXzVvkX-3Ufa5bBvb-Kgto6d2Zbt4qlfRpLMfvW3ydXRXOd9VpvdV27hjdFDqubMnuzpCL5PsefwQT2f3j-PbaVxTmrBYs4KFzCkH0NKUhZAmMQkDwoWRgkjOwWhN84KzskxzQywzUGjCihKYlnSELrdzl10b9nBeLSqX2_lcN7btneKYU0hT-i9IcMpDiABe_AHrtu-acIQiwdWUY7GBzndQbxa2UMsuONWt1beBAUi2wKqa2_VvH6vNZxTmavMZBSobvxIcRspEYhZkZ1tZ7Xzb_cgITxmkhNMvESmIkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218967088</pqid></control><display><type>article</type><title>On Estimating the Exponent of Power-Law Frequency Distributions</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>White, Ethan P. ; Enquist, Brian J. ; Green, Jessica L.</creator><creatorcontrib>White, Ethan P. ; Enquist, Brian J. ; Green, Jessica L.</creatorcontrib><description>Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/07-1288.1</identifier><identifier>PMID: 18481513</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>United States: Ecological Society of America</publisher><subject>Accuracy ; Animal ecology ; binning ; Cumulative distribution functions ; distribution ; Ecological genetics ; Ecology ; Ecosystem ; Estimation bias ; Estimation methods ; Evolutionary biology ; exponent ; Frequency distribution ; Human ecology ; Maximum likelihood estimation ; Maximum likelihood estimators ; Maximum likelihood method ; Models, Biological ; Models, Statistical ; Power laws ; Social sciences</subject><ispartof>Ecology (Durham), 2008-04, Vol.89 (4), p.905-912</ispartof><rights>Copyright 2008 Ecological Society of America</rights><rights>2008 by the Ecological Society of America</rights><rights>Copyright Ecological Society of America Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27651627$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27651627$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18481513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Ethan P.</creatorcontrib><creatorcontrib>Enquist, Brian J.</creatorcontrib><creatorcontrib>Green, Jessica L.</creatorcontrib><title>On Estimating the Exponent of Power-Law Frequency Distributions</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited.</description><subject>Accuracy</subject><subject>Animal ecology</subject><subject>binning</subject><subject>Cumulative distribution functions</subject><subject>distribution</subject><subject>Ecological genetics</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Evolutionary biology</subject><subject>exponent</subject><subject>Frequency distribution</subject><subject>Human ecology</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Maximum likelihood method</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Power laws</subject><subject>Social sciences</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFOwzAMhiMEYmNw4AFAFQduhThpmuSE0OgAadI4wIFTlLQptNra0aQae3sybYDEBUuWD_5-y_6N0CngKxASX2MeAxHiCvbQECSVsQSO99EQYyCxTJkYoCPnahwCEnGIBiASAQzoEN3MmihzvlpoXzVvkX-3Ufa5bBvb-Kgto6d2Zbt4qlfRpLMfvW3ydXRXOd9VpvdV27hjdFDqubMnuzpCL5PsefwQT2f3j-PbaVxTmrBYs4KFzCkH0NKUhZAmMQkDwoWRgkjOwWhN84KzskxzQywzUGjCihKYlnSELrdzl10b9nBeLSqX2_lcN7btneKYU0hT-i9IcMpDiABe_AHrtu-acIQiwdWUY7GBzndQbxa2UMsuONWt1beBAUi2wKqa2_VvH6vNZxTmavMZBSobvxIcRspEYhZkZ1tZ7Xzb_cgITxmkhNMvESmIkg</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>White, Ethan P.</creator><creator>Enquist, Brian J.</creator><creator>Green, Jessica L.</creator><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>On Estimating the Exponent of Power-Law Frequency Distributions</title><author>White, Ethan P. ; Enquist, Brian J. ; Green, Jessica L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3345-a5d5a5dc3711a9bfd89b4b451278b9829771baa3cd75ff6cb2e5b1da25df15a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accuracy</topic><topic>Animal ecology</topic><topic>binning</topic><topic>Cumulative distribution functions</topic><topic>distribution</topic><topic>Ecological genetics</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Evolutionary biology</topic><topic>exponent</topic><topic>Frequency distribution</topic><topic>Human ecology</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Maximum likelihood method</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Power laws</topic><topic>Social sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Ethan P.</creatorcontrib><creatorcontrib>Enquist, Brian J.</creatorcontrib><creatorcontrib>Green, Jessica L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Ethan P.</au><au>Enquist, Brian J.</au><au>Green, Jessica L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Estimating the Exponent of Power-Law Frequency Distributions</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>89</volume><issue>4</issue><spage>905</spage><epage>912</epage><pages>905-912</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited.</abstract><cop>United States</cop><pub>Ecological Society of America</pub><pmid>18481513</pmid><doi>10.1890/07-1288.1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2008-04, Vol.89 (4), p.905-912 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_miscellaneous_70731663 |
source | MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | Accuracy Animal ecology binning Cumulative distribution functions distribution Ecological genetics Ecology Ecosystem Estimation bias Estimation methods Evolutionary biology exponent Frequency distribution Human ecology Maximum likelihood estimation Maximum likelihood estimators Maximum likelihood method Models, Biological Models, Statistical Power laws Social sciences |
title | On Estimating the Exponent of Power-Law Frequency Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Estimating%20the%20Exponent%20of%20Power-Law%20Frequency%20Distributions&rft.jtitle=Ecology%20(Durham)&rft.au=White,%20Ethan%20P.&rft.date=2008-04-01&rft.volume=89&rft.issue=4&rft.spage=905&rft.epage=912&rft.pages=905-912&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/07-1288.1&rft_dat=%3Cjstor_proqu%3E27651627%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218967088&rft_id=info:pmid/18481513&rft_jstor_id=27651627&rfr_iscdi=true |