On Estimating the Exponent of Power-Law Frequency Distributions

Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2008-04, Vol.89 (4), p.905-912
Hauptverfasser: White, Ethan P., Enquist, Brian J., Green, Jessica L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 912
container_issue 4
container_start_page 905
container_title Ecology (Durham)
container_volume 89
creator White, Ethan P.
Enquist, Brian J.
Green, Jessica L.
description Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited.
doi_str_mv 10.1890/07-1288.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70731663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27651627</jstor_id><sourcerecordid>27651627</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3345-a5d5a5dc3711a9bfd89b4b451278b9829771baa3cd75ff6cb2e5b1da25df15a93</originalsourceid><addsrcrecordid>eNqFkcFOwzAMhiMEYmNw4AFAFQduhThpmuSE0OgAadI4wIFTlLQptNra0aQae3sybYDEBUuWD_5-y_6N0CngKxASX2MeAxHiCvbQECSVsQSO99EQYyCxTJkYoCPnahwCEnGIBiASAQzoEN3MmihzvlpoXzVvkX-3Ufa5bBvb-Kgto6d2Zbt4qlfRpLMfvW3ydXRXOd9VpvdV27hjdFDqubMnuzpCL5PsefwQT2f3j-PbaVxTmrBYs4KFzCkH0NKUhZAmMQkDwoWRgkjOwWhN84KzskxzQywzUGjCihKYlnSELrdzl10b9nBeLSqX2_lcN7btneKYU0hT-i9IcMpDiABe_AHrtu-acIQiwdWUY7GBzndQbxa2UMsuONWt1beBAUi2wKqa2_VvH6vNZxTmavMZBSobvxIcRspEYhZkZ1tZ7Xzb_cgITxmkhNMvESmIkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218967088</pqid></control><display><type>article</type><title>On Estimating the Exponent of Power-Law Frequency Distributions</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>White, Ethan P. ; Enquist, Brian J. ; Green, Jessica L.</creator><creatorcontrib>White, Ethan P. ; Enquist, Brian J. ; Green, Jessica L.</creatorcontrib><description>Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/07-1288.1</identifier><identifier>PMID: 18481513</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>United States: Ecological Society of America</publisher><subject>Accuracy ; Animal ecology ; binning ; Cumulative distribution functions ; distribution ; Ecological genetics ; Ecology ; Ecosystem ; Estimation bias ; Estimation methods ; Evolutionary biology ; exponent ; Frequency distribution ; Human ecology ; Maximum likelihood estimation ; Maximum likelihood estimators ; Maximum likelihood method ; Models, Biological ; Models, Statistical ; Power laws ; Social sciences</subject><ispartof>Ecology (Durham), 2008-04, Vol.89 (4), p.905-912</ispartof><rights>Copyright 2008 Ecological Society of America</rights><rights>2008 by the Ecological Society of America</rights><rights>Copyright Ecological Society of America Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27651627$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27651627$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18481513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Ethan P.</creatorcontrib><creatorcontrib>Enquist, Brian J.</creatorcontrib><creatorcontrib>Green, Jessica L.</creatorcontrib><title>On Estimating the Exponent of Power-Law Frequency Distributions</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited.</description><subject>Accuracy</subject><subject>Animal ecology</subject><subject>binning</subject><subject>Cumulative distribution functions</subject><subject>distribution</subject><subject>Ecological genetics</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Evolutionary biology</subject><subject>exponent</subject><subject>Frequency distribution</subject><subject>Human ecology</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Maximum likelihood method</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Power laws</subject><subject>Social sciences</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFOwzAMhiMEYmNw4AFAFQduhThpmuSE0OgAadI4wIFTlLQptNra0aQae3sybYDEBUuWD_5-y_6N0CngKxASX2MeAxHiCvbQECSVsQSO99EQYyCxTJkYoCPnahwCEnGIBiASAQzoEN3MmihzvlpoXzVvkX-3Ufa5bBvb-Kgto6d2Zbt4qlfRpLMfvW3ydXRXOd9VpvdV27hjdFDqubMnuzpCL5PsefwQT2f3j-PbaVxTmrBYs4KFzCkH0NKUhZAmMQkDwoWRgkjOwWhN84KzskxzQywzUGjCihKYlnSELrdzl10b9nBeLSqX2_lcN7btneKYU0hT-i9IcMpDiABe_AHrtu-acIQiwdWUY7GBzndQbxa2UMsuONWt1beBAUi2wKqa2_VvH6vNZxTmavMZBSobvxIcRspEYhZkZ1tZ7Xzb_cgITxmkhNMvESmIkg</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>White, Ethan P.</creator><creator>Enquist, Brian J.</creator><creator>Green, Jessica L.</creator><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>On Estimating the Exponent of Power-Law Frequency Distributions</title><author>White, Ethan P. ; Enquist, Brian J. ; Green, Jessica L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3345-a5d5a5dc3711a9bfd89b4b451278b9829771baa3cd75ff6cb2e5b1da25df15a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accuracy</topic><topic>Animal ecology</topic><topic>binning</topic><topic>Cumulative distribution functions</topic><topic>distribution</topic><topic>Ecological genetics</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Evolutionary biology</topic><topic>exponent</topic><topic>Frequency distribution</topic><topic>Human ecology</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Maximum likelihood method</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Power laws</topic><topic>Social sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Ethan P.</creatorcontrib><creatorcontrib>Enquist, Brian J.</creatorcontrib><creatorcontrib>Green, Jessica L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Ethan P.</au><au>Enquist, Brian J.</au><au>Green, Jessica L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Estimating the Exponent of Power-Law Frequency Distributions</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>89</volume><issue>4</issue><spage>905</spage><epage>912</epage><pages>905-912</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited.</abstract><cop>United States</cop><pub>Ecological Society of America</pub><pmid>18481513</pmid><doi>10.1890/07-1288.1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2008-04, Vol.89 (4), p.905-912
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_70731663
source MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Accuracy
Animal ecology
binning
Cumulative distribution functions
distribution
Ecological genetics
Ecology
Ecosystem
Estimation bias
Estimation methods
Evolutionary biology
exponent
Frequency distribution
Human ecology
Maximum likelihood estimation
Maximum likelihood estimators
Maximum likelihood method
Models, Biological
Models, Statistical
Power laws
Social sciences
title On Estimating the Exponent of Power-Law Frequency Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Estimating%20the%20Exponent%20of%20Power-Law%20Frequency%20Distributions&rft.jtitle=Ecology%20(Durham)&rft.au=White,%20Ethan%20P.&rft.date=2008-04-01&rft.volume=89&rft.issue=4&rft.spage=905&rft.epage=912&rft.pages=905-912&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/07-1288.1&rft_dat=%3Cjstor_proqu%3E27651627%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218967088&rft_id=info:pmid/18481513&rft_jstor_id=27651627&rfr_iscdi=true