V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway

The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2006-02, Vol.8 (2), p.124-136
Hauptverfasser: Marshansky, Vladimir, Hurtado-Lorenzo, Andrés, Skinner, Mhairi, Annan, Jaafar El, Futai, Masamitsu, Sun-Wada, Ge-Hong, Bourgoin, Sylvain, Casanova, James, Wildeman, Alan, Bechoua, Shaliha, Ausiello, Dennis A, Brown, Dennis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 2
container_start_page 124
container_title Nature cell biology
container_volume 8
creator Marshansky, Vladimir
Hurtado-Lorenzo, Andrés
Skinner, Mhairi
Annan, Jaafar El
Futai, Masamitsu
Sun-Wada, Ge-Hong
Bourgoin, Sylvain
Casanova, James
Wildeman, Alan
Bechoua, Shaliha
Ausiello, Dennis A
Brown, Dennis
description The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.
doi_str_mv 10.1038/ncb1348
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70729144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183058955</galeid><sourcerecordid>A183058955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c7eb0a73c0cb34dcabb8bdc54771ff5cb1893b21f954ad1ff8da7a7c882b059b3</originalsourceid><addsrcrecordid>eNplkctu1TAQhiMEohcQTwCKWHBZpNixHTvLqOJSqaKoFLbR2J7kpEqcYju05-1xyYGqIC9sz__Nr7lk2TNKjihh6p0zmjKuHmT7lMuq4JWsH96-K1FIVpd72UEIl4RQzol8nO3RilOhhNrPuu9Fc_EFAuaDi-jBxJBfD3GTN-efz3JwNm98VyUxR_DjNkdn5zBPGH5rHvtlhJh-cYP5lZ8jJtJi78FCHH6mGMTNNWyfZI86GAM-3d2H2bcP7y-OPxWnZx9PjpvTwnDGY2EkagKSGWI049aA1kpbI7iUtOtEalLVTJe0qwUHm0LKggRplCo1EbVmh9mr1TfV8mPBENtpCAbHERzOS2glkWWdppDAl_-Al_PiXaqtLcuSCSqFTNDRCvUwYju4bo5pQulYnAYzO-yGFG-oYkSoWoiU8PZeQmIi3sQelhDak6_n99nXK2v8HILHrr3ywwR-21LS3i613S01kS92tS56QnvH7baYgDcrEJLkevR3zfzv9XxFHcTF41-vP_ovv-OzaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222351757</pqid></control><display><type>article</type><title>V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Marshansky, Vladimir ; Hurtado-Lorenzo, Andrés ; Skinner, Mhairi ; Annan, Jaafar El ; Futai, Masamitsu ; Sun-Wada, Ge-Hong ; Bourgoin, Sylvain ; Casanova, James ; Wildeman, Alan ; Bechoua, Shaliha ; Ausiello, Dennis A ; Brown, Dennis</creator><creatorcontrib>Marshansky, Vladimir ; Hurtado-Lorenzo, Andrés ; Skinner, Mhairi ; Annan, Jaafar El ; Futai, Masamitsu ; Sun-Wada, Ge-Hong ; Bourgoin, Sylvain ; Casanova, James ; Wildeman, Alan ; Bechoua, Shaliha ; Ausiello, Dennis A ; Brown, Dennis</creatorcontrib><description>The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1348</identifier><identifier>PMID: 16415858</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Acidification ; Adenosine triphosphatase ; ADP-Ribosylation Factors - metabolism ; Ammonium Chloride - pharmacology ; Animals ; Biodegradation ; Biology ; Biomedical and Life Sciences ; Cancer Research ; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone - pharmacology ; Cell Biology ; Cell Line ; Cellular control mechanisms ; Developmental Biology ; Dynamins - genetics ; Dynamins - metabolism ; Endocytosis - drug effects ; Endocytosis - physiology ; Endosomes - drug effects ; Endosomes - metabolism ; Epithelial Cells - metabolism ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration - drug effects ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Kidney Tubules, Proximal - cytology ; Kidney Tubules, Proximal - metabolism ; Life Sciences ; Macrolides - pharmacology ; Membranes ; Mice ; Models, Biological ; Mutation - genetics ; Physiological aspects ; Protein Binding ; Protein Interaction Mapping ; Protein Transport - physiology ; Proteins ; Proteins - metabolism ; Protons ; Serum Albumin, Bovine - metabolism ; Stem Cells ; Transfection ; Vacuolar Proton-Translocating ATPases - antagonists &amp; inhibitors ; Vacuolar Proton-Translocating ATPases - genetics ; Vacuolar Proton-Translocating ATPases - metabolism ; Vacuoles</subject><ispartof>Nature cell biology, 2006-02, Vol.8 (2), p.124-136</ispartof><rights>Springer Nature Limited 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c7eb0a73c0cb34dcabb8bdc54771ff5cb1893b21f954ad1ff8da7a7c882b059b3</citedby><cites>FETCH-LOGICAL-c434t-c7eb0a73c0cb34dcabb8bdc54771ff5cb1893b21f954ad1ff8da7a7c882b059b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1348$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1348$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16415858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marshansky, Vladimir</creatorcontrib><creatorcontrib>Hurtado-Lorenzo, Andrés</creatorcontrib><creatorcontrib>Skinner, Mhairi</creatorcontrib><creatorcontrib>Annan, Jaafar El</creatorcontrib><creatorcontrib>Futai, Masamitsu</creatorcontrib><creatorcontrib>Sun-Wada, Ge-Hong</creatorcontrib><creatorcontrib>Bourgoin, Sylvain</creatorcontrib><creatorcontrib>Casanova, James</creatorcontrib><creatorcontrib>Wildeman, Alan</creatorcontrib><creatorcontrib>Bechoua, Shaliha</creatorcontrib><creatorcontrib>Ausiello, Dennis A</creatorcontrib><creatorcontrib>Brown, Dennis</creatorcontrib><title>V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.</description><subject>Acidification</subject><subject>Adenosine triphosphatase</subject><subject>ADP-Ribosylation Factors - metabolism</subject><subject>Ammonium Chloride - pharmacology</subject><subject>Animals</subject><subject>Biodegradation</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone - pharmacology</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Cellular control mechanisms</subject><subject>Developmental Biology</subject><subject>Dynamins - genetics</subject><subject>Dynamins - metabolism</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - physiology</subject><subject>Endosomes - drug effects</subject><subject>Endosomes - metabolism</subject><subject>Epithelial Cells - metabolism</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration - drug effects</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Kidney Tubules, Proximal - cytology</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Life Sciences</subject><subject>Macrolides - pharmacology</subject><subject>Membranes</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Mutation - genetics</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Protein Transport - physiology</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Protons</subject><subject>Serum Albumin, Bovine - metabolism</subject><subject>Stem Cells</subject><subject>Transfection</subject><subject>Vacuolar Proton-Translocating ATPases - antagonists &amp; inhibitors</subject><subject>Vacuolar Proton-Translocating ATPases - genetics</subject><subject>Vacuolar Proton-Translocating ATPases - metabolism</subject><subject>Vacuoles</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkctu1TAQhiMEohcQTwCKWHBZpNixHTvLqOJSqaKoFLbR2J7kpEqcYju05-1xyYGqIC9sz__Nr7lk2TNKjihh6p0zmjKuHmT7lMuq4JWsH96-K1FIVpd72UEIl4RQzol8nO3RilOhhNrPuu9Fc_EFAuaDi-jBxJBfD3GTN-efz3JwNm98VyUxR_DjNkdn5zBPGH5rHvtlhJh-cYP5lZ8jJtJi78FCHH6mGMTNNWyfZI86GAM-3d2H2bcP7y-OPxWnZx9PjpvTwnDGY2EkagKSGWI049aA1kpbI7iUtOtEalLVTJe0qwUHm0LKggRplCo1EbVmh9mr1TfV8mPBENtpCAbHERzOS2glkWWdppDAl_-Al_PiXaqtLcuSCSqFTNDRCvUwYju4bo5pQulYnAYzO-yGFG-oYkSoWoiU8PZeQmIi3sQelhDak6_n99nXK2v8HILHrr3ywwR-21LS3i613S01kS92tS56QnvH7baYgDcrEJLkevR3zfzv9XxFHcTF41-vP_ovv-OzaQ</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Marshansky, Vladimir</creator><creator>Hurtado-Lorenzo, Andrés</creator><creator>Skinner, Mhairi</creator><creator>Annan, Jaafar El</creator><creator>Futai, Masamitsu</creator><creator>Sun-Wada, Ge-Hong</creator><creator>Bourgoin, Sylvain</creator><creator>Casanova, James</creator><creator>Wildeman, Alan</creator><creator>Bechoua, Shaliha</creator><creator>Ausiello, Dennis A</creator><creator>Brown, Dennis</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway</title><author>Marshansky, Vladimir ; Hurtado-Lorenzo, Andrés ; Skinner, Mhairi ; Annan, Jaafar El ; Futai, Masamitsu ; Sun-Wada, Ge-Hong ; Bourgoin, Sylvain ; Casanova, James ; Wildeman, Alan ; Bechoua, Shaliha ; Ausiello, Dennis A ; Brown, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c7eb0a73c0cb34dcabb8bdc54771ff5cb1893b21f954ad1ff8da7a7c882b059b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acidification</topic><topic>Adenosine triphosphatase</topic><topic>ADP-Ribosylation Factors - metabolism</topic><topic>Ammonium Chloride - pharmacology</topic><topic>Animals</topic><topic>Biodegradation</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone - pharmacology</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Cellular control mechanisms</topic><topic>Developmental Biology</topic><topic>Dynamins - genetics</topic><topic>Dynamins - metabolism</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - physiology</topic><topic>Endosomes - drug effects</topic><topic>Endosomes - metabolism</topic><topic>Epithelial Cells - metabolism</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration - drug effects</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Kidney Tubules, Proximal - cytology</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Life Sciences</topic><topic>Macrolides - pharmacology</topic><topic>Membranes</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Mutation - genetics</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Protein Transport - physiology</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Protons</topic><topic>Serum Albumin, Bovine - metabolism</topic><topic>Stem Cells</topic><topic>Transfection</topic><topic>Vacuolar Proton-Translocating ATPases - antagonists &amp; inhibitors</topic><topic>Vacuolar Proton-Translocating ATPases - genetics</topic><topic>Vacuolar Proton-Translocating ATPases - metabolism</topic><topic>Vacuoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshansky, Vladimir</creatorcontrib><creatorcontrib>Hurtado-Lorenzo, Andrés</creatorcontrib><creatorcontrib>Skinner, Mhairi</creatorcontrib><creatorcontrib>Annan, Jaafar El</creatorcontrib><creatorcontrib>Futai, Masamitsu</creatorcontrib><creatorcontrib>Sun-Wada, Ge-Hong</creatorcontrib><creatorcontrib>Bourgoin, Sylvain</creatorcontrib><creatorcontrib>Casanova, James</creatorcontrib><creatorcontrib>Wildeman, Alan</creatorcontrib><creatorcontrib>Bechoua, Shaliha</creatorcontrib><creatorcontrib>Ausiello, Dennis A</creatorcontrib><creatorcontrib>Brown, Dennis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshansky, Vladimir</au><au>Hurtado-Lorenzo, Andrés</au><au>Skinner, Mhairi</au><au>Annan, Jaafar El</au><au>Futai, Masamitsu</au><au>Sun-Wada, Ge-Hong</au><au>Bourgoin, Sylvain</au><au>Casanova, James</au><au>Wildeman, Alan</au><au>Bechoua, Shaliha</au><au>Ausiello, Dennis A</au><au>Brown, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>8</volume><issue>2</issue><spage>124</spage><epage>136</epage><pages>124-136</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16415858</pmid><doi>10.1038/ncb1348</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2006-02, Vol.8 (2), p.124-136
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_70729144
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects Acidification
Adenosine triphosphatase
ADP-Ribosylation Factors - metabolism
Ammonium Chloride - pharmacology
Animals
Biodegradation
Biology
Biomedical and Life Sciences
Cancer Research
Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone - pharmacology
Cell Biology
Cell Line
Cellular control mechanisms
Developmental Biology
Dynamins - genetics
Dynamins - metabolism
Endocytosis - drug effects
Endocytosis - physiology
Endosomes - drug effects
Endosomes - metabolism
Epithelial Cells - metabolism
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
GTPase-Activating Proteins - genetics
GTPase-Activating Proteins - metabolism
HeLa Cells
Humans
Hydrogen-Ion Concentration - drug effects
Isoenzymes - genetics
Isoenzymes - metabolism
Kidney Tubules, Proximal - cytology
Kidney Tubules, Proximal - metabolism
Life Sciences
Macrolides - pharmacology
Membranes
Mice
Models, Biological
Mutation - genetics
Physiological aspects
Protein Binding
Protein Interaction Mapping
Protein Transport - physiology
Proteins
Proteins - metabolism
Protons
Serum Albumin, Bovine - metabolism
Stem Cells
Transfection
Vacuolar Proton-Translocating ATPases - antagonists & inhibitors
Vacuolar Proton-Translocating ATPases - genetics
Vacuolar Proton-Translocating ATPases - metabolism
Vacuoles
title V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=V-ATPase%20interacts%20with%20ARNO%20and%20Arf6%20in%20early%20endosomes%20and%20regulates%20the%20protein%20degradative%20pathway&rft.jtitle=Nature%20cell%20biology&rft.au=Marshansky,%20Vladimir&rft.date=2006-02-01&rft.volume=8&rft.issue=2&rft.spage=124&rft.epage=136&rft.pages=124-136&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1348&rft_dat=%3Cgale_proqu%3EA183058955%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222351757&rft_id=info:pmid/16415858&rft_galeid=A183058955&rfr_iscdi=true