Synergistic antileukemia effect of combinational gene therapy using murine β-defensin 2 and IL-18 in L1210 murine leukemia model
Murine beta-defensin 2 (MBD2) is not only chemotactic for immature dendritic cells but also activates them by Toll-like receptor 4. We have previously demonstrated that vaccine with MBD2 elicited potent antileukemia responses in the L1210 murine model. Interleukin-18 (IL-18) is an essential cytokine...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2007-08, Vol.14 (15), p.1181-1187 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Murine beta-defensin 2 (MBD2) is not only chemotactic for immature dendritic cells but also activates them by Toll-like receptor 4. We have previously demonstrated that vaccine with MBD2 elicited potent antileukemia responses in the L1210 murine model. Interleukin-18 (IL-18) is an essential cytokine for the generation of Th1 response and natural killer cells and cytotoxic T lymphocytes (CTL) activation. As MBD2 and IL-18 appear to function on different components required by an effective antitumor immune response including both innate and adaptive immunity, we investigated whether combinatorial delivery of MBD2 and IL-18 transduced L1210 cells could elicit synergistic antileukemia effects. First, we constructed a single plasmid vector carrying both pro-IL-18 and IL-1beta converting enzyme (ICE) genes, and found that transfection of this vector into L1210 cells resulted in efficient secretion of bioactive IL-18. Combinatorial delivery of MBD2 and pro-IL-18-ICE modified L1210 cells conferred a superior inhibition of leukemogenicity over either L1210-MBD2 or L1210-pro-IL-18-ICE alone; moreover, the survived mice developed long-lasting protective immunity as determined by rechallenge experiments. This combined vaccine also elicited the most marked therapeutic effect, CTL activity and interferon-gamma production. These results suggest that the combination of MBD2 and IL-18 induces more effective antileukemia activity and provides a promising strategy for cancer therapy. |
---|---|
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/sj.gt.3302966 |