An upper extremity kinematic model for evaluation of hemiparetic stroke
Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2006-01, Vol.39 (4), p.681-688 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 688 |
---|---|
container_issue | 4 |
container_start_page | 681 |
container_title | Journal of biomechanics |
container_volume | 39 |
creator | Hingtgen, Brooke McGuire, John R. Wang, Mei Harris, Gerald F. |
description | Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the system's accuracy and precision. As an example of application, the model was used to evaluate the upper extremity movement of eight hemiparetic stroke patients with spasticity, while completing a set of reaching tasks. Main outcome measures include kinematic variables of movement time, range of motion, peak angular velocity, and percentage of reach where peak velocity occurs. The model computed motion patterns in the affected and unaffected arms. The unaffected arm showed a larger range of motion and higher angular velocity than the affected arm. Frequency analysis (power spectrum) demonstrated lower frequency content for elbow angle and angular velocity in the affected limb when compared to the unaffected limb. The model can accurately quantify UE arm motion, which may aid in the assessment and planning of stroke rehabilitation, and help to shorten recovery time. |
doi_str_mv | 10.1016/j.jbiomech.2005.01.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70719065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929005000552</els_id><sourcerecordid>2744051341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ba0b4e883d518f6985ac821a2a7f46263249983e6214e0a3c9d22692e8aa4a193</originalsourceid><addsrcrecordid>eNqFkF1L5TAQhsOirGd1_4IUBO_anXycNLlTRN0FwRu9DjnpFFPbppu0ov_eHM4RwRuvBmaed2Z4CDmlUFGg8k9XdRsfBnRPFQNYV0ArAPWDrKiqecm4ggOyAmC01EzDEfmVUgcAtaj1T3JEpeCa8XpFbi_HYpkmjAW-zhEHP78Vz37Ewc7eFUNosC_akKcvtl9yL4xFaIunDE424pZJcwzPeEIOW9sn_L2vx-Tx5vrh6m95d3_77-ryrnRci7ncWNgIVIo3a6paqdXaOsWoZbZuhWSSM6G14igZFQiWO90wJjVDZa2wVPNjcr7bO8Xwf8E0m8Enh31vRwxLMjXUVINcZ_DsC9iFJY75N0OBC80EZZApuaNcDClFbM0U_WDjW4bMVrTpzIdosxVtgJosOgdP9-uXzYDNZ2xvNgMXOwCzjReP0STncXTY-IhuNk3w3914B8JikRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034924120</pqid></control><display><type>article</type><title>An upper extremity kinematic model for evaluation of hemiparetic stroke</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Hingtgen, Brooke ; McGuire, John R. ; Wang, Mei ; Harris, Gerald F.</creator><creatorcontrib>Hingtgen, Brooke ; McGuire, John R. ; Wang, Mei ; Harris, Gerald F.</creatorcontrib><description>Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the system's accuracy and precision. As an example of application, the model was used to evaluate the upper extremity movement of eight hemiparetic stroke patients with spasticity, while completing a set of reaching tasks. Main outcome measures include kinematic variables of movement time, range of motion, peak angular velocity, and percentage of reach where peak velocity occurs. The model computed motion patterns in the affected and unaffected arms. The unaffected arm showed a larger range of motion and higher angular velocity than the affected arm. Frequency analysis (power spectrum) demonstrated lower frequency content for elbow angle and angular velocity in the affected limb when compared to the unaffected limb. The model can accurately quantify UE arm motion, which may aid in the assessment and planning of stroke rehabilitation, and help to shorten recovery time.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2005.01.008</identifier><identifier>PMID: 16439237</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Aged ; Biomechanical Phenomena - methods ; Biomechanics ; Computer Simulation ; Diagnosis, Computer-Assisted - methods ; Elbow ; Female ; Humans ; Kinematics ; Male ; Middle Aged ; Models, Biological ; Movement Disorders - diagnosis ; Movement Disorders - etiology ; Movement Disorders - physiopathology ; Paresis - diagnosis ; Paresis - etiology ; Paresis - physiopathology ; Range of Motion, Articular ; Rehabilitation ; Stroke ; Stroke - complications ; Stroke - diagnosis ; Stroke - physiopathology ; Upper extremity ; Upper Extremity - physiopathology</subject><ispartof>Journal of biomechanics, 2006-01, Vol.39 (4), p.681-688</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ba0b4e883d518f6985ac821a2a7f46263249983e6214e0a3c9d22692e8aa4a193</citedby><cites>FETCH-LOGICAL-c394t-ba0b4e883d518f6985ac821a2a7f46263249983e6214e0a3c9d22692e8aa4a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1034924120?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16439237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hingtgen, Brooke</creatorcontrib><creatorcontrib>McGuire, John R.</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Harris, Gerald F.</creatorcontrib><title>An upper extremity kinematic model for evaluation of hemiparetic stroke</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the system's accuracy and precision. As an example of application, the model was used to evaluate the upper extremity movement of eight hemiparetic stroke patients with spasticity, while completing a set of reaching tasks. Main outcome measures include kinematic variables of movement time, range of motion, peak angular velocity, and percentage of reach where peak velocity occurs. The model computed motion patterns in the affected and unaffected arms. The unaffected arm showed a larger range of motion and higher angular velocity than the affected arm. Frequency analysis (power spectrum) demonstrated lower frequency content for elbow angle and angular velocity in the affected limb when compared to the unaffected limb. The model can accurately quantify UE arm motion, which may aid in the assessment and planning of stroke rehabilitation, and help to shorten recovery time.</description><subject>Adult</subject><subject>Aged</subject><subject>Biomechanical Phenomena - methods</subject><subject>Biomechanics</subject><subject>Computer Simulation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Elbow</subject><subject>Female</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Movement Disorders - diagnosis</subject><subject>Movement Disorders - etiology</subject><subject>Movement Disorders - physiopathology</subject><subject>Paresis - diagnosis</subject><subject>Paresis - etiology</subject><subject>Paresis - physiopathology</subject><subject>Range of Motion, Articular</subject><subject>Rehabilitation</subject><subject>Stroke</subject><subject>Stroke - complications</subject><subject>Stroke - diagnosis</subject><subject>Stroke - physiopathology</subject><subject>Upper extremity</subject><subject>Upper Extremity - physiopathology</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkF1L5TAQhsOirGd1_4IUBO_anXycNLlTRN0FwRu9DjnpFFPbppu0ov_eHM4RwRuvBmaed2Z4CDmlUFGg8k9XdRsfBnRPFQNYV0ArAPWDrKiqecm4ggOyAmC01EzDEfmVUgcAtaj1T3JEpeCa8XpFbi_HYpkmjAW-zhEHP78Vz37Ewc7eFUNosC_akKcvtl9yL4xFaIunDE424pZJcwzPeEIOW9sn_L2vx-Tx5vrh6m95d3_77-ryrnRci7ncWNgIVIo3a6paqdXaOsWoZbZuhWSSM6G14igZFQiWO90wJjVDZa2wVPNjcr7bO8Xwf8E0m8Enh31vRwxLMjXUVINcZ_DsC9iFJY75N0OBC80EZZApuaNcDClFbM0U_WDjW4bMVrTpzIdosxVtgJosOgdP9-uXzYDNZ2xvNgMXOwCzjReP0STncXTY-IhuNk3w3914B8JikRg</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Hingtgen, Brooke</creator><creator>McGuire, John R.</creator><creator>Wang, Mei</creator><creator>Harris, Gerald F.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>An upper extremity kinematic model for evaluation of hemiparetic stroke</title><author>Hingtgen, Brooke ; McGuire, John R. ; Wang, Mei ; Harris, Gerald F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ba0b4e883d518f6985ac821a2a7f46263249983e6214e0a3c9d22692e8aa4a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biomechanical Phenomena - methods</topic><topic>Biomechanics</topic><topic>Computer Simulation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Elbow</topic><topic>Female</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Movement Disorders - diagnosis</topic><topic>Movement Disorders - etiology</topic><topic>Movement Disorders - physiopathology</topic><topic>Paresis - diagnosis</topic><topic>Paresis - etiology</topic><topic>Paresis - physiopathology</topic><topic>Range of Motion, Articular</topic><topic>Rehabilitation</topic><topic>Stroke</topic><topic>Stroke - complications</topic><topic>Stroke - diagnosis</topic><topic>Stroke - physiopathology</topic><topic>Upper extremity</topic><topic>Upper Extremity - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hingtgen, Brooke</creatorcontrib><creatorcontrib>McGuire, John R.</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Harris, Gerald F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hingtgen, Brooke</au><au>McGuire, John R.</au><au>Wang, Mei</au><au>Harris, Gerald F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An upper extremity kinematic model for evaluation of hemiparetic stroke</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>39</volume><issue>4</issue><spage>681</spage><epage>688</epage><pages>681-688</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the system's accuracy and precision. As an example of application, the model was used to evaluate the upper extremity movement of eight hemiparetic stroke patients with spasticity, while completing a set of reaching tasks. Main outcome measures include kinematic variables of movement time, range of motion, peak angular velocity, and percentage of reach where peak velocity occurs. The model computed motion patterns in the affected and unaffected arms. The unaffected arm showed a larger range of motion and higher angular velocity than the affected arm. Frequency analysis (power spectrum) demonstrated lower frequency content for elbow angle and angular velocity in the affected limb when compared to the unaffected limb. The model can accurately quantify UE arm motion, which may aid in the assessment and planning of stroke rehabilitation, and help to shorten recovery time.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>16439237</pmid><doi>10.1016/j.jbiomech.2005.01.008</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2006-01, Vol.39 (4), p.681-688 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_70719065 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Adult Aged Biomechanical Phenomena - methods Biomechanics Computer Simulation Diagnosis, Computer-Assisted - methods Elbow Female Humans Kinematics Male Middle Aged Models, Biological Movement Disorders - diagnosis Movement Disorders - etiology Movement Disorders - physiopathology Paresis - diagnosis Paresis - etiology Paresis - physiopathology Range of Motion, Articular Rehabilitation Stroke Stroke - complications Stroke - diagnosis Stroke - physiopathology Upper extremity Upper Extremity - physiopathology |
title | An upper extremity kinematic model for evaluation of hemiparetic stroke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20upper%20extremity%20kinematic%20model%20for%20evaluation%20of%20hemiparetic%20stroke&rft.jtitle=Journal%20of%20biomechanics&rft.au=Hingtgen,%20Brooke&rft.date=2006-01-01&rft.volume=39&rft.issue=4&rft.spage=681&rft.epage=688&rft.pages=681-688&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2005.01.008&rft_dat=%3Cproquest_cross%3E2744051341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034924120&rft_id=info:pmid/16439237&rft_els_id=S0021929005000552&rfr_iscdi=true |