Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation
Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action r...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2007-07, Vol.282 (28), p.20502-20512 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20512 |
---|---|
container_issue | 28 |
container_start_page | 20502 |
container_title | The Journal of biological chemistry |
container_volume | 282 |
creator | Fisher, Timothy S. Surdo, Paola Lo Pandit, Shilpa Mattu, Marco Santoro, Joseph C. Wisniewski, Doug Cummings, Richard T. Calzetta, Alessandra Cubbon, Rose M. Fischer, Paul A. Tarachandani, Anil De Francesco, Raffaele Wright, Samuel D. Sparrow, Carl P. Carfi, Andrea Sitlani, Ayesha |
description | Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an ∼150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nm) compared with a neutral pH (KD = 628 nm). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation. |
doi_str_mv | 10.1074/jbc.M701634200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70702511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819780430</els_id><sourcerecordid>70702511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-8683e1cbac988ec57b578bb9e7d1e01f914d40a86778e17a4636781703b1fd4d3</originalsourceid><addsrcrecordid>eNp1kE1r3DAQQEVoSLZprj0WHUppD95oLNmSj2HzSRxS2gZKL8KWxlmFXcm1tAn591XZhZwyMMwwvBmGR8hHYHNgUpw89mZ-KxnUXJSM7ZEZMMULXsHvd2TGWAlFU1bqkLyP8ZHlEA0ckEOQouENVzPy53wY0KRIw0DHK9p5S9vwTM_QR5deaOvGME4hofP0a3vWfqPB0--LnzdNYXFEb9Enmuf0BxocU5hy87BZdckF_4HsD90q4vGuHpH7i_Nfi6uivbu8Xpy2hRFSpkLViiOYvjONUmgq2VdS9X2D0gIyGBoQVrBO1VIqBNmJmtdSgWS8h8EKy4_Il-3d_OjfDcak1y4aXK06j2ETtWSSlRVABudb0EwhxgkHPU5u3U0vGpj-b1Nnm_rVZl74tLu86ddoX_Gdvgx83gJL97B8dhPq3gWzxLUuVZlTl6xiZcbUFsOs4cnhpKNx6A3avGKStsG99cI_f0qMiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70702511</pqid></control><display><type>article</type><title>Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Fisher, Timothy S. ; Surdo, Paola Lo ; Pandit, Shilpa ; Mattu, Marco ; Santoro, Joseph C. ; Wisniewski, Doug ; Cummings, Richard T. ; Calzetta, Alessandra ; Cubbon, Rose M. ; Fischer, Paul A. ; Tarachandani, Anil ; De Francesco, Raffaele ; Wright, Samuel D. ; Sparrow, Carl P. ; Carfi, Andrea ; Sitlani, Ayesha</creator><creatorcontrib>Fisher, Timothy S. ; Surdo, Paola Lo ; Pandit, Shilpa ; Mattu, Marco ; Santoro, Joseph C. ; Wisniewski, Doug ; Cummings, Richard T. ; Calzetta, Alessandra ; Cubbon, Rose M. ; Fischer, Paul A. ; Tarachandani, Anil ; De Francesco, Raffaele ; Wright, Samuel D. ; Sparrow, Carl P. ; Carfi, Andrea ; Sitlani, Ayesha</creatorcontrib><description>Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an ∼150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nm) compared with a neutral pH (KD = 628 nm). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M701634200</identifier><identifier>PMID: 17493938</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Line ; CHO Cells ; Cricetinae ; Cricetulus ; Genes, Dominant ; Genetic Diseases, Inborn - genetics ; Genetic Diseases, Inborn - metabolism ; Humans ; Hypercholesterolemia - genetics ; Hypercholesterolemia - metabolism ; Lipoproteins, LDL - metabolism ; Lysosomes - genetics ; Lysosomes - metabolism ; Models, Biological ; Mutation, Missense ; Proprotein Convertase 9 ; Proprotein Convertases ; Protein Binding - genetics ; Receptors, LDL - agonists ; Receptors, LDL - metabolism ; Serine Endopeptidases - metabolism ; Serine Endopeptidases - pharmacology</subject><ispartof>The Journal of biological chemistry, 2007-07, Vol.282 (28), p.20502-20512</ispartof><rights>2007 © 2007 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-8683e1cbac988ec57b578bb9e7d1e01f914d40a86778e17a4636781703b1fd4d3</citedby><cites>FETCH-LOGICAL-c477t-8683e1cbac988ec57b578bb9e7d1e01f914d40a86778e17a4636781703b1fd4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17493938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisher, Timothy S.</creatorcontrib><creatorcontrib>Surdo, Paola Lo</creatorcontrib><creatorcontrib>Pandit, Shilpa</creatorcontrib><creatorcontrib>Mattu, Marco</creatorcontrib><creatorcontrib>Santoro, Joseph C.</creatorcontrib><creatorcontrib>Wisniewski, Doug</creatorcontrib><creatorcontrib>Cummings, Richard T.</creatorcontrib><creatorcontrib>Calzetta, Alessandra</creatorcontrib><creatorcontrib>Cubbon, Rose M.</creatorcontrib><creatorcontrib>Fischer, Paul A.</creatorcontrib><creatorcontrib>Tarachandani, Anil</creatorcontrib><creatorcontrib>De Francesco, Raffaele</creatorcontrib><creatorcontrib>Wright, Samuel D.</creatorcontrib><creatorcontrib>Sparrow, Carl P.</creatorcontrib><creatorcontrib>Carfi, Andrea</creatorcontrib><creatorcontrib>Sitlani, Ayesha</creatorcontrib><title>Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an ∼150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nm) compared with a neutral pH (KD = 628 nm). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation.</description><subject>Animals</subject><subject>Cell Line</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Genes, Dominant</subject><subject>Genetic Diseases, Inborn - genetics</subject><subject>Genetic Diseases, Inborn - metabolism</subject><subject>Humans</subject><subject>Hypercholesterolemia - genetics</subject><subject>Hypercholesterolemia - metabolism</subject><subject>Lipoproteins, LDL - metabolism</subject><subject>Lysosomes - genetics</subject><subject>Lysosomes - metabolism</subject><subject>Models, Biological</subject><subject>Mutation, Missense</subject><subject>Proprotein Convertase 9</subject><subject>Proprotein Convertases</subject><subject>Protein Binding - genetics</subject><subject>Receptors, LDL - agonists</subject><subject>Receptors, LDL - metabolism</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Serine Endopeptidases - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1r3DAQQEVoSLZprj0WHUppD95oLNmSj2HzSRxS2gZKL8KWxlmFXcm1tAn591XZhZwyMMwwvBmGR8hHYHNgUpw89mZ-KxnUXJSM7ZEZMMULXsHvd2TGWAlFU1bqkLyP8ZHlEA0ckEOQouENVzPy53wY0KRIw0DHK9p5S9vwTM_QR5deaOvGME4hofP0a3vWfqPB0--LnzdNYXFEb9Enmuf0BxocU5hy87BZdckF_4HsD90q4vGuHpH7i_Nfi6uivbu8Xpy2hRFSpkLViiOYvjONUmgq2VdS9X2D0gIyGBoQVrBO1VIqBNmJmtdSgWS8h8EKy4_Il-3d_OjfDcak1y4aXK06j2ETtWSSlRVABudb0EwhxgkHPU5u3U0vGpj-b1Nnm_rVZl74tLu86ddoX_Gdvgx83gJL97B8dhPq3gWzxLUuVZlTl6xiZcbUFsOs4cnhpKNx6A3avGKStsG99cI_f0qMiw</recordid><startdate>20070713</startdate><enddate>20070713</enddate><creator>Fisher, Timothy S.</creator><creator>Surdo, Paola Lo</creator><creator>Pandit, Shilpa</creator><creator>Mattu, Marco</creator><creator>Santoro, Joseph C.</creator><creator>Wisniewski, Doug</creator><creator>Cummings, Richard T.</creator><creator>Calzetta, Alessandra</creator><creator>Cubbon, Rose M.</creator><creator>Fischer, Paul A.</creator><creator>Tarachandani, Anil</creator><creator>De Francesco, Raffaele</creator><creator>Wright, Samuel D.</creator><creator>Sparrow, Carl P.</creator><creator>Carfi, Andrea</creator><creator>Sitlani, Ayesha</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070713</creationdate><title>Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation</title><author>Fisher, Timothy S. ; Surdo, Paola Lo ; Pandit, Shilpa ; Mattu, Marco ; Santoro, Joseph C. ; Wisniewski, Doug ; Cummings, Richard T. ; Calzetta, Alessandra ; Cubbon, Rose M. ; Fischer, Paul A. ; Tarachandani, Anil ; De Francesco, Raffaele ; Wright, Samuel D. ; Sparrow, Carl P. ; Carfi, Andrea ; Sitlani, Ayesha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-8683e1cbac988ec57b578bb9e7d1e01f914d40a86778e17a4636781703b1fd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Genes, Dominant</topic><topic>Genetic Diseases, Inborn - genetics</topic><topic>Genetic Diseases, Inborn - metabolism</topic><topic>Humans</topic><topic>Hypercholesterolemia - genetics</topic><topic>Hypercholesterolemia - metabolism</topic><topic>Lipoproteins, LDL - metabolism</topic><topic>Lysosomes - genetics</topic><topic>Lysosomes - metabolism</topic><topic>Models, Biological</topic><topic>Mutation, Missense</topic><topic>Proprotein Convertase 9</topic><topic>Proprotein Convertases</topic><topic>Protein Binding - genetics</topic><topic>Receptors, LDL - agonists</topic><topic>Receptors, LDL - metabolism</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Serine Endopeptidases - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, Timothy S.</creatorcontrib><creatorcontrib>Surdo, Paola Lo</creatorcontrib><creatorcontrib>Pandit, Shilpa</creatorcontrib><creatorcontrib>Mattu, Marco</creatorcontrib><creatorcontrib>Santoro, Joseph C.</creatorcontrib><creatorcontrib>Wisniewski, Doug</creatorcontrib><creatorcontrib>Cummings, Richard T.</creatorcontrib><creatorcontrib>Calzetta, Alessandra</creatorcontrib><creatorcontrib>Cubbon, Rose M.</creatorcontrib><creatorcontrib>Fischer, Paul A.</creatorcontrib><creatorcontrib>Tarachandani, Anil</creatorcontrib><creatorcontrib>De Francesco, Raffaele</creatorcontrib><creatorcontrib>Wright, Samuel D.</creatorcontrib><creatorcontrib>Sparrow, Carl P.</creatorcontrib><creatorcontrib>Carfi, Andrea</creatorcontrib><creatorcontrib>Sitlani, Ayesha</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, Timothy S.</au><au>Surdo, Paola Lo</au><au>Pandit, Shilpa</au><au>Mattu, Marco</au><au>Santoro, Joseph C.</au><au>Wisniewski, Doug</au><au>Cummings, Richard T.</au><au>Calzetta, Alessandra</au><au>Cubbon, Rose M.</au><au>Fischer, Paul A.</au><au>Tarachandani, Anil</au><au>De Francesco, Raffaele</au><au>Wright, Samuel D.</au><au>Sparrow, Carl P.</au><au>Carfi, Andrea</au><au>Sitlani, Ayesha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2007-07-13</date><risdate>2007</risdate><volume>282</volume><issue>28</issue><spage>20502</spage><epage>20512</epage><pages>20502-20512</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an ∼150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nm) compared with a neutral pH (KD = 628 nm). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17493938</pmid><doi>10.1074/jbc.M701634200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2007-07, Vol.282 (28), p.20502-20512 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_70702511 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Cell Line CHO Cells Cricetinae Cricetulus Genes, Dominant Genetic Diseases, Inborn - genetics Genetic Diseases, Inborn - metabolism Humans Hypercholesterolemia - genetics Hypercholesterolemia - metabolism Lipoproteins, LDL - metabolism Lysosomes - genetics Lysosomes - metabolism Models, Biological Mutation, Missense Proprotein Convertase 9 Proprotein Convertases Protein Binding - genetics Receptors, LDL - agonists Receptors, LDL - metabolism Serine Endopeptidases - metabolism Serine Endopeptidases - pharmacology |
title | Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20pH%20and%20Low%20Density%20Lipoprotein%20(LDL)%20on%20PCSK9-dependent%20LDL%20Receptor%20Regulation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Fisher,%20Timothy%20S.&rft.date=2007-07-13&rft.volume=282&rft.issue=28&rft.spage=20502&rft.epage=20512&rft.pages=20502-20512&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M701634200&rft_dat=%3Cproquest_cross%3E70702511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70702511&rft_id=info:pmid/17493938&rft_els_id=S0021925819780430&rfr_iscdi=true |