Separation of branched polystyrene by comprehensive two-dimensional liquid chromatography
Branched polystyrenes (PS) featuring a bivariate distribution in the molecular weight and in the number of branches were characterized by comprehensive two-dimensional liquid chromatography (2D-LC). The branched PS were prepared by anionic polymerization using n-butyl Li as an initiator and a subseq...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2006-01, Vol.1103 (2), p.235-242 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Branched polystyrenes (PS) featuring a bivariate distribution in the molecular weight and in the number of branches were characterized by comprehensive two-dimensional liquid chromatography (2D-LC). The branched PS were prepared by anionic polymerization using
n-butyl Li as an initiator and a subsequent linking reaction with
p-(chlorodimethylsilyl)styrene (CDMSS). The
n-butyl Li initiator yields polystyryl anions with broad molecular weight distribution (MWD) and the linking reaction with CDMSS yields branched PS with different number of branches. For the first dimension (1st-D) separation, reversed-phase temperature gradient interaction chromatography (RP-TGIC) was employed to separate the branched polymer according to mainly the molecular weight. In the second dimension (2nd-D) separation, the effluents from the RP-TGIC separation are subjected to liquid chromatography at chromatographic critical conditions (LCCC), in which the separation was carried out at the critical condition of linear homo-PS to separate the branched PS in terms of the number of branches. The 2D-LC resolution of RP-TGIC
×
LCCC combination worked better than the common LCCC
×
size-exclusion chromatography (SEC) configuration due to the higher resolution of RP-TGIC in molecular weight than SEC. Furthermore, by virtue of using the same eluent in RP-TGIC and LCCC (only the column temperature is different), RP-TGIC
×
LCCC separation is free from possible ‘break through’ and large system peak problems. This type of 2D-LC separation could be utilized efficiently for the analysis of branched polymers with branching units distinguishable by LC separation. |
---|---|
ISSN: | 0021-9673 |
DOI: | 10.1016/j.chroma.2005.11.050 |