Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons
We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2006-02, Vol.273 (3), p.588-600 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 600 |
---|---|
container_issue | 3 |
container_start_page | 588 |
container_title | The FEBS journal |
container_volume | 273 |
creator | Kremneva, Elena Nikolaeva, Olga Maytum, Robin Arutyunyan, Alexander M. Kleimenov, Sergei Yu Geeves, Michael A. Levitsky, Dmitrii I. |
description | We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N‐terminal exon 1b which replaces the muscle‐specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the α‐helix content of Tm or on the end‐to‐end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N‐terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the α‐Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle α‐Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule. |
doi_str_mv | 10.1111/j.1742-4658.2005.05092.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70693250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17096877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4492-4cda38d30f17575bcc4fbae7bb69373053016d5e22e3065f76dc709bf5599b63</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0Eoj_wCsgrdpM6sR0nm0q0ailSJRbMgp3l2DeMR_6Z2gmd2fEIvAov0ofok5B0RmVZvPG17neOr-5BCJekKKdzti5KwaoFq3lTVITwgnDSVsX2FTp-brx-rtn3I3SS85oQylnbvkVHZc0qwprqGPnlCpJXDo-hj87Y8APHHmcf47DCfszaAVbB4BDD4TWkuIl-F7MN-OHP46_fq-ijsR5Sxvd2Uik3QApqsD_B7XDeOKvBYNjGkN-hN71yGd4f7lO0vL5aXt4sbr9-_nL56XahGWunkbVRtDGU9KXggndas75TILqubqmghFNS1oZDVQElNe9FbbQgbddz3rZdTU_Rx73tJsW7EfIgvc0anFMB4pilIJNPxcmLYDm51o0QE9jsQZ1izgl6uUnWq7STJZFzJHIt523LefNyjkQ-RSK3k_TD4Y-x82D-CQ8ZTMD5Hri3Dnb_bSyvry6-zSX9C9B5nqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17096877</pqid></control><display><type>article</type><title>Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Free Full-Text Journals in Chemistry</source><creator>Kremneva, Elena ; Nikolaeva, Olga ; Maytum, Robin ; Arutyunyan, Alexander M. ; Kleimenov, Sergei Yu ; Geeves, Michael A. ; Levitsky, Dmitrii I.</creator><creatorcontrib>Kremneva, Elena ; Nikolaeva, Olga ; Maytum, Robin ; Arutyunyan, Alexander M. ; Kleimenov, Sergei Yu ; Geeves, Michael A. ; Levitsky, Dmitrii I.</creatorcontrib><description>We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N‐terminal exon 1b which replaces the muscle‐specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the α‐helix content of Tm or on the end‐to‐end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N‐terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the α‐Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle α‐Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2005.05092.x</identifier><identifier>PMID: 16420482</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>actin ; Actins - physiology ; Alternative Splicing ; Animals ; Calorimetry, Differential Scanning - methods ; circular dichroism ; Circular Dichroism - methods ; Cloning, Molecular ; differential scanning calorimetry ; Dimerization ; Exons - genetics ; Fibroblasts - physiology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - physiology ; Muscle, Smooth, Vascular - physiology ; Protein Denaturation - genetics ; Protein Folding ; Protein Isoforms - genetics ; Protein Isoforms - physiology ; Rats ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Temperature ; thermal unfolding ; tropomyosin ; Tropomyosin - genetics ; Tropomyosin - physiology</subject><ispartof>The FEBS journal, 2006-02, Vol.273 (3), p.588-600</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4492-4cda38d30f17575bcc4fbae7bb69373053016d5e22e3065f76dc709bf5599b63</citedby><cites>FETCH-LOGICAL-c4492-4cda38d30f17575bcc4fbae7bb69373053016d5e22e3065f76dc709bf5599b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2005.05092.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2005.05092.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16420482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kremneva, Elena</creatorcontrib><creatorcontrib>Nikolaeva, Olga</creatorcontrib><creatorcontrib>Maytum, Robin</creatorcontrib><creatorcontrib>Arutyunyan, Alexander M.</creatorcontrib><creatorcontrib>Kleimenov, Sergei Yu</creatorcontrib><creatorcontrib>Geeves, Michael A.</creatorcontrib><creatorcontrib>Levitsky, Dmitrii I.</creatorcontrib><title>Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N‐terminal exon 1b which replaces the muscle‐specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the α‐helix content of Tm or on the end‐to‐end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N‐terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the α‐Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle α‐Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.</description><subject>actin</subject><subject>Actins - physiology</subject><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Calorimetry, Differential Scanning - methods</subject><subject>circular dichroism</subject><subject>Circular Dichroism - methods</subject><subject>Cloning, Molecular</subject><subject>differential scanning calorimetry</subject><subject>Dimerization</subject><subject>Exons - genetics</subject><subject>Fibroblasts - physiology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - physiology</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>Protein Denaturation - genetics</subject><subject>Protein Folding</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - physiology</subject><subject>Rats</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Temperature</subject><subject>thermal unfolding</subject><subject>tropomyosin</subject><subject>Tropomyosin - genetics</subject><subject>Tropomyosin - physiology</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0Eoj_wCsgrdpM6sR0nm0q0ailSJRbMgp3l2DeMR_6Z2gmd2fEIvAov0ofok5B0RmVZvPG17neOr-5BCJekKKdzti5KwaoFq3lTVITwgnDSVsX2FTp-brx-rtn3I3SS85oQylnbvkVHZc0qwprqGPnlCpJXDo-hj87Y8APHHmcf47DCfszaAVbB4BDD4TWkuIl-F7MN-OHP46_fq-ijsR5Sxvd2Uik3QApqsD_B7XDeOKvBYNjGkN-hN71yGd4f7lO0vL5aXt4sbr9-_nL56XahGWunkbVRtDGU9KXggndas75TILqubqmghFNS1oZDVQElNe9FbbQgbddz3rZdTU_Rx73tJsW7EfIgvc0anFMB4pilIJNPxcmLYDm51o0QE9jsQZ1izgl6uUnWq7STJZFzJHIt523LefNyjkQ-RSK3k_TD4Y-x82D-CQ8ZTMD5Hri3Dnb_bSyvry6-zSX9C9B5nqo</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Kremneva, Elena</creator><creator>Nikolaeva, Olga</creator><creator>Maytum, Robin</creator><creator>Arutyunyan, Alexander M.</creator><creator>Kleimenov, Sergei Yu</creator><creator>Geeves, Michael A.</creator><creator>Levitsky, Dmitrii I.</creator><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>200602</creationdate><title>Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons</title><author>Kremneva, Elena ; Nikolaeva, Olga ; Maytum, Robin ; Arutyunyan, Alexander M. ; Kleimenov, Sergei Yu ; Geeves, Michael A. ; Levitsky, Dmitrii I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4492-4cda38d30f17575bcc4fbae7bb69373053016d5e22e3065f76dc709bf5599b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>actin</topic><topic>Actins - physiology</topic><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Calorimetry, Differential Scanning - methods</topic><topic>circular dichroism</topic><topic>Circular Dichroism - methods</topic><topic>Cloning, Molecular</topic><topic>differential scanning calorimetry</topic><topic>Dimerization</topic><topic>Exons - genetics</topic><topic>Fibroblasts - physiology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - physiology</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>Protein Denaturation - genetics</topic><topic>Protein Folding</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - physiology</topic><topic>Rats</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Temperature</topic><topic>thermal unfolding</topic><topic>tropomyosin</topic><topic>Tropomyosin - genetics</topic><topic>Tropomyosin - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremneva, Elena</creatorcontrib><creatorcontrib>Nikolaeva, Olga</creatorcontrib><creatorcontrib>Maytum, Robin</creatorcontrib><creatorcontrib>Arutyunyan, Alexander M.</creatorcontrib><creatorcontrib>Kleimenov, Sergei Yu</creatorcontrib><creatorcontrib>Geeves, Michael A.</creatorcontrib><creatorcontrib>Levitsky, Dmitrii I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremneva, Elena</au><au>Nikolaeva, Olga</au><au>Maytum, Robin</au><au>Arutyunyan, Alexander M.</au><au>Kleimenov, Sergei Yu</au><au>Geeves, Michael A.</au><au>Levitsky, Dmitrii I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2006-02</date><risdate>2006</risdate><volume>273</volume><issue>3</issue><spage>588</spage><epage>600</epage><pages>588-600</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N‐terminal exon 1b which replaces the muscle‐specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the α‐helix content of Tm or on the end‐to‐end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N‐terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the α‐Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle α‐Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16420482</pmid><doi>10.1111/j.1742-4658.2005.05092.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2006-02, Vol.273 (3), p.588-600 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_70693250 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Free Full-Text Journals in Chemistry |
subjects | actin Actins - physiology Alternative Splicing Animals Calorimetry, Differential Scanning - methods circular dichroism Circular Dichroism - methods Cloning, Molecular differential scanning calorimetry Dimerization Exons - genetics Fibroblasts - physiology Homeodomain Proteins - genetics Homeodomain Proteins - physiology Muscle, Smooth, Vascular - physiology Protein Denaturation - genetics Protein Folding Protein Isoforms - genetics Protein Isoforms - physiology Rats Recombinant Proteins - genetics Recombinant Proteins - metabolism Temperature thermal unfolding tropomyosin Tropomyosin - genetics Tropomyosin - physiology |
title | Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20unfolding%20of%20smooth%20muscle%20and%20nonmuscle%20tropomyosin%20%CE%B1%E2%80%90homodimers%20with%20alternatively%20spliced%20exons&rft.jtitle=The%20FEBS%20journal&rft.au=Kremneva,%20Elena&rft.date=2006-02&rft.volume=273&rft.issue=3&rft.spage=588&rft.epage=600&rft.pages=588-600&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2005.05092.x&rft_dat=%3Cproquest_cross%3E17096877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17096877&rft_id=info:pmid/16420482&rfr_iscdi=true |