Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons

We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2006-02, Vol.273 (3), p.588-600
Hauptverfasser: Kremneva, Elena, Nikolaeva, Olga, Maytum, Robin, Arutyunyan, Alexander M., Kleimenov, Sergei Yu, Geeves, Michael A., Levitsky, Dmitrii I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 600
container_issue 3
container_start_page 588
container_title The FEBS journal
container_volume 273
creator Kremneva, Elena
Nikolaeva, Olga
Maytum, Robin
Arutyunyan, Alexander M.
Kleimenov, Sergei Yu
Geeves, Michael A.
Levitsky, Dmitrii I.
description We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N‐terminal exon 1b which replaces the muscle‐specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the α‐helix content of Tm or on the end‐to‐end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N‐terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the α‐Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle α‐Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.
doi_str_mv 10.1111/j.1742-4658.2005.05092.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70693250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17096877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4492-4cda38d30f17575bcc4fbae7bb69373053016d5e22e3065f76dc709bf5599b63</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0Eoj_wCsgrdpM6sR0nm0q0ailSJRbMgp3l2DeMR_6Z2gmd2fEIvAov0ofok5B0RmVZvPG17neOr-5BCJekKKdzti5KwaoFq3lTVITwgnDSVsX2FTp-brx-rtn3I3SS85oQylnbvkVHZc0qwprqGPnlCpJXDo-hj87Y8APHHmcf47DCfszaAVbB4BDD4TWkuIl-F7MN-OHP46_fq-ijsR5Sxvd2Uik3QApqsD_B7XDeOKvBYNjGkN-hN71yGd4f7lO0vL5aXt4sbr9-_nL56XahGWunkbVRtDGU9KXggndas75TILqubqmghFNS1oZDVQElNe9FbbQgbddz3rZdTU_Rx73tJsW7EfIgvc0anFMB4pilIJNPxcmLYDm51o0QE9jsQZ1izgl6uUnWq7STJZFzJHIt523LefNyjkQ-RSK3k_TD4Y-x82D-CQ8ZTMD5Hri3Dnb_bSyvry6-zSX9C9B5nqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17096877</pqid></control><display><type>article</type><title>Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Free Full-Text Journals in Chemistry</source><creator>Kremneva, Elena ; Nikolaeva, Olga ; Maytum, Robin ; Arutyunyan, Alexander M. ; Kleimenov, Sergei Yu ; Geeves, Michael A. ; Levitsky, Dmitrii I.</creator><creatorcontrib>Kremneva, Elena ; Nikolaeva, Olga ; Maytum, Robin ; Arutyunyan, Alexander M. ; Kleimenov, Sergei Yu ; Geeves, Michael A. ; Levitsky, Dmitrii I.</creatorcontrib><description>We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N‐terminal exon 1b which replaces the muscle‐specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the α‐helix content of Tm or on the end‐to‐end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N‐terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the α‐Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle α‐Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2005.05092.x</identifier><identifier>PMID: 16420482</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>actin ; Actins - physiology ; Alternative Splicing ; Animals ; Calorimetry, Differential Scanning - methods ; circular dichroism ; Circular Dichroism - methods ; Cloning, Molecular ; differential scanning calorimetry ; Dimerization ; Exons - genetics ; Fibroblasts - physiology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - physiology ; Muscle, Smooth, Vascular - physiology ; Protein Denaturation - genetics ; Protein Folding ; Protein Isoforms - genetics ; Protein Isoforms - physiology ; Rats ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Temperature ; thermal unfolding ; tropomyosin ; Tropomyosin - genetics ; Tropomyosin - physiology</subject><ispartof>The FEBS journal, 2006-02, Vol.273 (3), p.588-600</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4492-4cda38d30f17575bcc4fbae7bb69373053016d5e22e3065f76dc709bf5599b63</citedby><cites>FETCH-LOGICAL-c4492-4cda38d30f17575bcc4fbae7bb69373053016d5e22e3065f76dc709bf5599b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2005.05092.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2005.05092.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16420482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kremneva, Elena</creatorcontrib><creatorcontrib>Nikolaeva, Olga</creatorcontrib><creatorcontrib>Maytum, Robin</creatorcontrib><creatorcontrib>Arutyunyan, Alexander M.</creatorcontrib><creatorcontrib>Kleimenov, Sergei Yu</creatorcontrib><creatorcontrib>Geeves, Michael A.</creatorcontrib><creatorcontrib>Levitsky, Dmitrii I.</creatorcontrib><title>Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N‐terminal exon 1b which replaces the muscle‐specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the α‐helix content of Tm or on the end‐to‐end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N‐terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the α‐Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle α‐Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.</description><subject>actin</subject><subject>Actins - physiology</subject><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Calorimetry, Differential Scanning - methods</subject><subject>circular dichroism</subject><subject>Circular Dichroism - methods</subject><subject>Cloning, Molecular</subject><subject>differential scanning calorimetry</subject><subject>Dimerization</subject><subject>Exons - genetics</subject><subject>Fibroblasts - physiology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - physiology</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>Protein Denaturation - genetics</subject><subject>Protein Folding</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - physiology</subject><subject>Rats</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Temperature</subject><subject>thermal unfolding</subject><subject>tropomyosin</subject><subject>Tropomyosin - genetics</subject><subject>Tropomyosin - physiology</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0Eoj_wCsgrdpM6sR0nm0q0ailSJRbMgp3l2DeMR_6Z2gmd2fEIvAov0ofok5B0RmVZvPG17neOr-5BCJekKKdzti5KwaoFq3lTVITwgnDSVsX2FTp-brx-rtn3I3SS85oQylnbvkVHZc0qwprqGPnlCpJXDo-hj87Y8APHHmcf47DCfszaAVbB4BDD4TWkuIl-F7MN-OHP46_fq-ijsR5Sxvd2Uik3QApqsD_B7XDeOKvBYNjGkN-hN71yGd4f7lO0vL5aXt4sbr9-_nL56XahGWunkbVRtDGU9KXggndas75TILqubqmghFNS1oZDVQElNe9FbbQgbddz3rZdTU_Rx73tJsW7EfIgvc0anFMB4pilIJNPxcmLYDm51o0QE9jsQZ1izgl6uUnWq7STJZFzJHIt523LefNyjkQ-RSK3k_TD4Y-x82D-CQ8ZTMD5Hri3Dnb_bSyvry6-zSX9C9B5nqo</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Kremneva, Elena</creator><creator>Nikolaeva, Olga</creator><creator>Maytum, Robin</creator><creator>Arutyunyan, Alexander M.</creator><creator>Kleimenov, Sergei Yu</creator><creator>Geeves, Michael A.</creator><creator>Levitsky, Dmitrii I.</creator><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>200602</creationdate><title>Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons</title><author>Kremneva, Elena ; Nikolaeva, Olga ; Maytum, Robin ; Arutyunyan, Alexander M. ; Kleimenov, Sergei Yu ; Geeves, Michael A. ; Levitsky, Dmitrii I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4492-4cda38d30f17575bcc4fbae7bb69373053016d5e22e3065f76dc709bf5599b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>actin</topic><topic>Actins - physiology</topic><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Calorimetry, Differential Scanning - methods</topic><topic>circular dichroism</topic><topic>Circular Dichroism - methods</topic><topic>Cloning, Molecular</topic><topic>differential scanning calorimetry</topic><topic>Dimerization</topic><topic>Exons - genetics</topic><topic>Fibroblasts - physiology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - physiology</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>Protein Denaturation - genetics</topic><topic>Protein Folding</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - physiology</topic><topic>Rats</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Temperature</topic><topic>thermal unfolding</topic><topic>tropomyosin</topic><topic>Tropomyosin - genetics</topic><topic>Tropomyosin - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremneva, Elena</creatorcontrib><creatorcontrib>Nikolaeva, Olga</creatorcontrib><creatorcontrib>Maytum, Robin</creatorcontrib><creatorcontrib>Arutyunyan, Alexander M.</creatorcontrib><creatorcontrib>Kleimenov, Sergei Yu</creatorcontrib><creatorcontrib>Geeves, Michael A.</creatorcontrib><creatorcontrib>Levitsky, Dmitrii I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremneva, Elena</au><au>Nikolaeva, Olga</au><au>Maytum, Robin</au><au>Arutyunyan, Alexander M.</au><au>Kleimenov, Sergei Yu</au><au>Geeves, Michael A.</au><au>Levitsky, Dmitrii I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2006-02</date><risdate>2006</risdate><volume>273</volume><issue>3</issue><spage>588</spage><epage>600</epage><pages>588-600</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of α‐tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N‐terminal exon 1b which replaces the muscle‐specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the α‐helix content of Tm or on the end‐to‐end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N‐terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the α‐Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle α‐Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16420482</pmid><doi>10.1111/j.1742-4658.2005.05092.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2006-02, Vol.273 (3), p.588-600
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_70693250
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Free Full-Text Journals in Chemistry
subjects actin
Actins - physiology
Alternative Splicing
Animals
Calorimetry, Differential Scanning - methods
circular dichroism
Circular Dichroism - methods
Cloning, Molecular
differential scanning calorimetry
Dimerization
Exons - genetics
Fibroblasts - physiology
Homeodomain Proteins - genetics
Homeodomain Proteins - physiology
Muscle, Smooth, Vascular - physiology
Protein Denaturation - genetics
Protein Folding
Protein Isoforms - genetics
Protein Isoforms - physiology
Rats
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Temperature
thermal unfolding
tropomyosin
Tropomyosin - genetics
Tropomyosin - physiology
title Thermal unfolding of smooth muscle and nonmuscle tropomyosin α‐homodimers with alternatively spliced exons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20unfolding%20of%20smooth%20muscle%20and%20nonmuscle%20tropomyosin%20%CE%B1%E2%80%90homodimers%20with%20alternatively%20spliced%20exons&rft.jtitle=The%20FEBS%20journal&rft.au=Kremneva,%20Elena&rft.date=2006-02&rft.volume=273&rft.issue=3&rft.spage=588&rft.epage=600&rft.pages=588-600&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2005.05092.x&rft_dat=%3Cproquest_cross%3E17096877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17096877&rft_id=info:pmid/16420482&rfr_iscdi=true