Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience

Low motion phases for cardiac computed tomography reconstructions are currently detected manually in a user-dependent selection process which is often time consuming and suboptimal. The concept of motion maps was recently introduced to achieve automatic phase selection. This pilot study compared the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2006-02, Vol.16 (2), p.365-373
Hauptverfasser: Hoffmann, Martin H K, Lessick, Jonathan, Manzke, Robert, Schmid, Florian T, Gershin, Edward, Boll, Daniel T, Rispler, Shmuel, Aschoff, Andrik J, Grass, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 373
container_issue 2
container_start_page 365
container_title European radiology
container_volume 16
creator Hoffmann, Martin H K
Lessick, Jonathan
Manzke, Robert
Schmid, Florian T
Gershin, Edward
Boll, Daniel T
Rispler, Shmuel
Aschoff, Andrik J
Grass, Michael
description Low motion phases for cardiac computed tomography reconstructions are currently detected manually in a user-dependent selection process which is often time consuming and suboptimal. The concept of motion maps was recently introduced to achieve automatic phase selection. This pilot study compared the accuracy of motion-map phase selection to that with manual iterative selection. The study included 20 patients, consisting of one group with low and one with high heart rate. The technique automatically derives a motion strength function between multiple low-resolution reconstructions through the cardiac cycle, with periods of lowest difference between neighboring phases indicating minimal cardiac motion. A high level of agreement was found for phase selection achieved with the motion map approach compared with the manual iterative selection process. The motion maps allowed automated quiescent phase detection of the cardiac cycle in 85% of cases, with best results at low heart rates and for the left coronary artery. They can also provide additional information such as the presence of breathing artifacts. Motion maps show promise as a rapid off-line tool to automatically detect quiescent cardiac phases in a variety of patients.
doi_str_mv 10.1007/s00330-005-2849-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70692414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70692414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-ecfea27ef494b560362b98c47768832fbac9e884108e2f6f7f447a6731c984163</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpabab_oBcgiCQm9vRh_WRWwhJWwj0kpyFVjvaONiWI9nQ5NdH6S4UculpNKP3fWHmIeSEwTcGoL8XACGgAWgbbqRtXj6QFZOCNwyM_EhWYIVptLXyiHwp5REALJP6MzliCjiTLaxIf7nMafBzF-gWZ8xDN9YmjTRFWt_d4HsafN52PtAh_f2ZHnzBQmPKNKRhWmbc0pqRdtlPD8-0WnbduLug1T131Y5_JswdjgGPyafo-4JfD3VN7m-u765-Nre_f_y6urxtguRybjBE9FxjlFZuWgVC8Y01QWqtjBE8bnywaIysWyKPKuoopfZKCxZsnSqxJuf73CmnpwXL7IauBOx7P2JaitOgLJf1Uv8TMitbxnRbhWfvhI9pyWNdwgnGlVFSVBRrwvaqkFMpGaObcj1HfnYM3BsxtyfmKjH3Rsy9VM_pIXnZDLj95zggEq9lPpI9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126864303</pqid></control><display><type>article</type><title>Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Hoffmann, Martin H K ; Lessick, Jonathan ; Manzke, Robert ; Schmid, Florian T ; Gershin, Edward ; Boll, Daniel T ; Rispler, Shmuel ; Aschoff, Andrik J ; Grass, Michael</creator><creatorcontrib>Hoffmann, Martin H K ; Lessick, Jonathan ; Manzke, Robert ; Schmid, Florian T ; Gershin, Edward ; Boll, Daniel T ; Rispler, Shmuel ; Aschoff, Andrik J ; Grass, Michael</creatorcontrib><description>Low motion phases for cardiac computed tomography reconstructions are currently detected manually in a user-dependent selection process which is often time consuming and suboptimal. The concept of motion maps was recently introduced to achieve automatic phase selection. This pilot study compared the accuracy of motion-map phase selection to that with manual iterative selection. The study included 20 patients, consisting of one group with low and one with high heart rate. The technique automatically derives a motion strength function between multiple low-resolution reconstructions through the cardiac cycle, with periods of lowest difference between neighboring phases indicating minimal cardiac motion. A high level of agreement was found for phase selection achieved with the motion map approach compared with the manual iterative selection process. The motion maps allowed automated quiescent phase detection of the cardiac cycle in 85% of cases, with best results at low heart rates and for the left coronary artery. They can also provide additional information such as the presence of breathing artifacts. Motion maps show promise as a rapid off-line tool to automatically detect quiescent cardiac phases in a variety of patients.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-005-2849-z</identifier><identifier>PMID: 16021450</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Automatic pilots ; Computed tomography ; Coronary Angiography - methods ; Coronary artery ; Female ; Heart rate ; Heart Rate - physiology ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Male ; Middle Aged ; Motion perception ; Myocardial Contraction - physiology ; Observer Variation ; Phases ; Tomography ; Tomography, X-Ray Computed - methods</subject><ispartof>European radiology, 2006-02, Vol.16 (2), p.365-373</ispartof><rights>Springer-Verlag 2005.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-ecfea27ef494b560362b98c47768832fbac9e884108e2f6f7f447a6731c984163</citedby><cites>FETCH-LOGICAL-c424t-ecfea27ef494b560362b98c47768832fbac9e884108e2f6f7f447a6731c984163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16021450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffmann, Martin H K</creatorcontrib><creatorcontrib>Lessick, Jonathan</creatorcontrib><creatorcontrib>Manzke, Robert</creatorcontrib><creatorcontrib>Schmid, Florian T</creatorcontrib><creatorcontrib>Gershin, Edward</creatorcontrib><creatorcontrib>Boll, Daniel T</creatorcontrib><creatorcontrib>Rispler, Shmuel</creatorcontrib><creatorcontrib>Aschoff, Andrik J</creatorcontrib><creatorcontrib>Grass, Michael</creatorcontrib><title>Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><description>Low motion phases for cardiac computed tomography reconstructions are currently detected manually in a user-dependent selection process which is often time consuming and suboptimal. The concept of motion maps was recently introduced to achieve automatic phase selection. This pilot study compared the accuracy of motion-map phase selection to that with manual iterative selection. The study included 20 patients, consisting of one group with low and one with high heart rate. The technique automatically derives a motion strength function between multiple low-resolution reconstructions through the cardiac cycle, with periods of lowest difference between neighboring phases indicating minimal cardiac motion. A high level of agreement was found for phase selection achieved with the motion map approach compared with the manual iterative selection process. The motion maps allowed automated quiescent phase detection of the cardiac cycle in 85% of cases, with best results at low heart rates and for the left coronary artery. They can also provide additional information such as the presence of breathing artifacts. Motion maps show promise as a rapid off-line tool to automatically detect quiescent cardiac phases in a variety of patients.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Automatic pilots</subject><subject>Computed tomography</subject><subject>Coronary Angiography - methods</subject><subject>Coronary artery</subject><subject>Female</subject><subject>Heart rate</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Motion perception</subject><subject>Myocardial Contraction - physiology</subject><subject>Observer Variation</subject><subject>Phases</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1r3DAQhkVpabab_oBcgiCQm9vRh_WRWwhJWwj0kpyFVjvaONiWI9nQ5NdH6S4UculpNKP3fWHmIeSEwTcGoL8XACGgAWgbbqRtXj6QFZOCNwyM_EhWYIVptLXyiHwp5REALJP6MzliCjiTLaxIf7nMafBzF-gWZ8xDN9YmjTRFWt_d4HsafN52PtAh_f2ZHnzBQmPKNKRhWmbc0pqRdtlPD8-0WnbduLug1T131Y5_JswdjgGPyafo-4JfD3VN7m-u765-Nre_f_y6urxtguRybjBE9FxjlFZuWgVC8Y01QWqtjBE8bnywaIysWyKPKuoopfZKCxZsnSqxJuf73CmnpwXL7IauBOx7P2JaitOgLJf1Uv8TMitbxnRbhWfvhI9pyWNdwgnGlVFSVBRrwvaqkFMpGaObcj1HfnYM3BsxtyfmKjH3Rsy9VM_pIXnZDLj95zggEq9lPpI9</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Hoffmann, Martin H K</creator><creator>Lessick, Jonathan</creator><creator>Manzke, Robert</creator><creator>Schmid, Florian T</creator><creator>Gershin, Edward</creator><creator>Boll, Daniel T</creator><creator>Rispler, Shmuel</creator><creator>Aschoff, Andrik J</creator><creator>Grass, Michael</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience</title><author>Hoffmann, Martin H K ; Lessick, Jonathan ; Manzke, Robert ; Schmid, Florian T ; Gershin, Edward ; Boll, Daniel T ; Rispler, Shmuel ; Aschoff, Andrik J ; Grass, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-ecfea27ef494b560362b98c47768832fbac9e884108e2f6f7f447a6731c984163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Automatic pilots</topic><topic>Computed tomography</topic><topic>Coronary Angiography - methods</topic><topic>Coronary artery</topic><topic>Female</topic><topic>Heart rate</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Motion perception</topic><topic>Myocardial Contraction - physiology</topic><topic>Observer Variation</topic><topic>Phases</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffmann, Martin H K</creatorcontrib><creatorcontrib>Lessick, Jonathan</creatorcontrib><creatorcontrib>Manzke, Robert</creatorcontrib><creatorcontrib>Schmid, Florian T</creatorcontrib><creatorcontrib>Gershin, Edward</creatorcontrib><creatorcontrib>Boll, Daniel T</creatorcontrib><creatorcontrib>Rispler, Shmuel</creatorcontrib><creatorcontrib>Aschoff, Andrik J</creatorcontrib><creatorcontrib>Grass, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffmann, Martin H K</au><au>Lessick, Jonathan</au><au>Manzke, Robert</au><au>Schmid, Florian T</au><au>Gershin, Edward</au><au>Boll, Daniel T</au><au>Rispler, Shmuel</au><au>Aschoff, Andrik J</au><au>Grass, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience</atitle><jtitle>European radiology</jtitle><addtitle>Eur Radiol</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>365</spage><epage>373</epage><pages>365-373</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Low motion phases for cardiac computed tomography reconstructions are currently detected manually in a user-dependent selection process which is often time consuming and suboptimal. The concept of motion maps was recently introduced to achieve automatic phase selection. This pilot study compared the accuracy of motion-map phase selection to that with manual iterative selection. The study included 20 patients, consisting of one group with low and one with high heart rate. The technique automatically derives a motion strength function between multiple low-resolution reconstructions through the cardiac cycle, with periods of lowest difference between neighboring phases indicating minimal cardiac motion. A high level of agreement was found for phase selection achieved with the motion map approach compared with the manual iterative selection process. The motion maps allowed automated quiescent phase detection of the cardiac cycle in 85% of cases, with best results at low heart rates and for the left coronary artery. They can also provide additional information such as the presence of breathing artifacts. Motion maps show promise as a rapid off-line tool to automatically detect quiescent cardiac phases in a variety of patients.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>16021450</pmid><doi>10.1007/s00330-005-2849-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2006-02, Vol.16 (2), p.365-373
issn 0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_70692414
source MEDLINE; SpringerLink Journals
subjects Adult
Aged
Aged, 80 and over
Automatic pilots
Computed tomography
Coronary Angiography - methods
Coronary artery
Female
Heart rate
Heart Rate - physiology
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Male
Middle Aged
Motion perception
Myocardial Contraction - physiology
Observer Variation
Phases
Tomography
Tomography, X-Ray Computed - methods
title Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20determination%20of%20minimal%20cardiac%20motion%20phases%20for%20computed%20tomography%20imaging:%20initial%20experience&rft.jtitle=European%20radiology&rft.au=Hoffmann,%20Martin%20H%20K&rft.date=2006-02-01&rft.volume=16&rft.issue=2&rft.spage=365&rft.epage=373&rft.pages=365-373&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-005-2849-z&rft_dat=%3Cproquest_cross%3E70692414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126864303&rft_id=info:pmid/16021450&rfr_iscdi=true