Readers should systematically assess methods used to identify, measure and analyze confounding in observational cohort studies

Abstract Objective To describe techniques used to address confounding in published observational studies. Study Design and Setting A systematic literature review identified studies using administrative or registry data to investigate health effects of drug therapies. Studies published from January 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical epidemiology 2007-08, Vol.60 (8), p.766.e1-766.e11
Hauptverfasser: Klein-Geltink, J.E, Rochon, P.A, Dyer, S, Laxer, M, Anderson, G.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766.e11
container_issue 8
container_start_page 766.e1
container_title Journal of clinical epidemiology
container_volume 60
creator Klein-Geltink, J.E
Rochon, P.A
Dyer, S
Laxer, M
Anderson, G.M
description Abstract Objective To describe techniques used to address confounding in published observational studies. Study Design and Setting A systematic literature review identified studies using administrative or registry data to investigate health effects of drug therapies. Studies published from January 2001 to December 2005 came from BMJ, New England Journal of Medicine, Lancet, Annals of Internal Medicine, and JAMA. A structured abstraction form was used to collect information about confounding. Results The search identified 29 studies. Twenty-two studies (76%) had 10,000 or more subjects and 18 (62%) used a mortality outcome. None mentioned use of a literature search to identify confounders, however, 28 (97%) listed confounders included, and 26 (90%) listed confounders not included in the study. Eighteen (62.1%) discussed the validity of confounder data. Most (22, or 76%) studies included a table with the distribution of confounders but none used effect size to assess imbalance between comparison groups. Almost all studies used regression techniques (28, or 97%); fewer used stratification (16, or 55%) or matching (four, or 14%) to address confounding. Eleven (40%) studies discussed sensitivity analyses. Conclusion Published cohort studies routinely include a list of potential confounders but there is room for improvement in confounder identification, measurement, and analysis.
doi_str_mv 10.1016/j.jclinepi.2006.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70691984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0895435606004306</els_id><sourcerecordid>70691984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-916ee6ca42452a15561fece04e61ce32f8e0baa4744f78a130d6f69e92ba3a503</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso7rj6F5aA6JWtJ22TtjeysvgFC4If1yGTnDqpnWbMSRfqhb_dlBkZ2BsvQi7Oc15y8pwsu-JQcODy9VAMZnQTHlxRAsiC8wKgfZBteNu0uehK_jDbQNuJvK6EvMieEA0AvIFGPM4ueCNB8oZvsj9fUFsMxGjn59EyWijiXkdn9DguTBMhEdtj3HlLbCa0LHrmLE7R9curVNE0B2R6sunocfmNzPip9_Nk3fSDuYn5LWG4S5E-1VNx50NkFGfrkJ5mj3o9Ej473ZfZ9_fvvt18zG8_f_h08_Y2N6IWMe-4RJRG12UtSs2FkLxHg1Cj5Aarsm8RtlrXTV33Tat5BVb2ssOu3OpKC6gus5fH3EPwv2akqPaODI6jntDPpBqQHe_aOoHP74GDn0N6OCkOVVW2spEyUfJImeCJAvbqENxehyVBavWjBvXPj1r9KM5V8pMar07x83aP9tx2EpKAFydAU1LQBz0ZR2eu7UoQ3TrQ9ZHD9Gt3DoMi43AyaF1AE5X17v9veXMvYqVW8T9xQTrPrahUoL6u27QuE0iAugJZ_QUCRMkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033286766</pqid></control><display><type>article</type><title>Readers should systematically assess methods used to identify, measure and analyze confounding in observational cohort studies</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Klein-Geltink, J.E ; Rochon, P.A ; Dyer, S ; Laxer, M ; Anderson, G.M</creator><creatorcontrib>Klein-Geltink, J.E ; Rochon, P.A ; Dyer, S ; Laxer, M ; Anderson, G.M</creatorcontrib><description>Abstract Objective To describe techniques used to address confounding in published observational studies. Study Design and Setting A systematic literature review identified studies using administrative or registry data to investigate health effects of drug therapies. Studies published from January 2001 to December 2005 came from BMJ, New England Journal of Medicine, Lancet, Annals of Internal Medicine, and JAMA. A structured abstraction form was used to collect information about confounding. Results The search identified 29 studies. Twenty-two studies (76%) had 10,000 or more subjects and 18 (62%) used a mortality outcome. None mentioned use of a literature search to identify confounders, however, 28 (97%) listed confounders included, and 26 (90%) listed confounders not included in the study. Eighteen (62.1%) discussed the validity of confounder data. Most (22, or 76%) studies included a table with the distribution of confounders but none used effect size to assess imbalance between comparison groups. Almost all studies used regression techniques (28, or 97%); fewer used stratification (16, or 55%) or matching (four, or 14%) to address confounding. Eleven (40%) studies discussed sensitivity analyses. Conclusion Published cohort studies routinely include a list of potential confounders but there is room for improvement in confounder identification, measurement, and analysis.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2006.11.008</identifier><identifier>PMID: 17606171</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Administrative data ; Biological and medical sciences ; Clinical trials ; Cohort analysis ; Cohort Studies ; Confounding factors (Epidemiology) ; Drug studies ; Epidemiology ; General aspects ; Guideline (PT) ; Humans ; Internal Medicine ; Literature reviews ; Medical sciences ; Methodology ; Miscellaneous ; Observation ; Observational studies ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Qualitative Research ; Research Design ; Retrospective studies ; Sensitivity analysis ; Statistical methods ; Variables</subject><ispartof>Journal of clinical epidemiology, 2007-08, Vol.60 (8), p.766.e1-766.e11</ispartof><rights>Elsevier Inc.</rights><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-916ee6ca42452a15561fece04e61ce32f8e0baa4744f78a130d6f69e92ba3a503</citedby><cites>FETCH-LOGICAL-c545t-916ee6ca42452a15561fece04e61ce32f8e0baa4744f78a130d6f69e92ba3a503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1033286766?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18920590$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17606171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein-Geltink, J.E</creatorcontrib><creatorcontrib>Rochon, P.A</creatorcontrib><creatorcontrib>Dyer, S</creatorcontrib><creatorcontrib>Laxer, M</creatorcontrib><creatorcontrib>Anderson, G.M</creatorcontrib><title>Readers should systematically assess methods used to identify, measure and analyze confounding in observational cohort studies</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>Abstract Objective To describe techniques used to address confounding in published observational studies. Study Design and Setting A systematic literature review identified studies using administrative or registry data to investigate health effects of drug therapies. Studies published from January 2001 to December 2005 came from BMJ, New England Journal of Medicine, Lancet, Annals of Internal Medicine, and JAMA. A structured abstraction form was used to collect information about confounding. Results The search identified 29 studies. Twenty-two studies (76%) had 10,000 or more subjects and 18 (62%) used a mortality outcome. None mentioned use of a literature search to identify confounders, however, 28 (97%) listed confounders included, and 26 (90%) listed confounders not included in the study. Eighteen (62.1%) discussed the validity of confounder data. Most (22, or 76%) studies included a table with the distribution of confounders but none used effect size to assess imbalance between comparison groups. Almost all studies used regression techniques (28, or 97%); fewer used stratification (16, or 55%) or matching (four, or 14%) to address confounding. Eleven (40%) studies discussed sensitivity analyses. Conclusion Published cohort studies routinely include a list of potential confounders but there is room for improvement in confounder identification, measurement, and analysis.</description><subject>Administrative data</subject><subject>Biological and medical sciences</subject><subject>Clinical trials</subject><subject>Cohort analysis</subject><subject>Cohort Studies</subject><subject>Confounding factors (Epidemiology)</subject><subject>Drug studies</subject><subject>Epidemiology</subject><subject>General aspects</subject><subject>Guideline (PT)</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Literature reviews</subject><subject>Medical sciences</subject><subject>Methodology</subject><subject>Miscellaneous</subject><subject>Observation</subject><subject>Observational studies</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Qualitative Research</subject><subject>Research Design</subject><subject>Retrospective studies</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Variables</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkl2L1DAUhoso7rj6F5aA6JWtJ22TtjeysvgFC4If1yGTnDqpnWbMSRfqhb_dlBkZ2BsvQi7Oc15y8pwsu-JQcODy9VAMZnQTHlxRAsiC8wKgfZBteNu0uehK_jDbQNuJvK6EvMieEA0AvIFGPM4ueCNB8oZvsj9fUFsMxGjn59EyWijiXkdn9DguTBMhEdtj3HlLbCa0LHrmLE7R9curVNE0B2R6sunocfmNzPip9_Nk3fSDuYn5LWG4S5E-1VNx50NkFGfrkJ5mj3o9Ej473ZfZ9_fvvt18zG8_f_h08_Y2N6IWMe-4RJRG12UtSs2FkLxHg1Cj5Aarsm8RtlrXTV33Tat5BVb2ssOu3OpKC6gus5fH3EPwv2akqPaODI6jntDPpBqQHe_aOoHP74GDn0N6OCkOVVW2spEyUfJImeCJAvbqENxehyVBavWjBvXPj1r9KM5V8pMar07x83aP9tx2EpKAFydAU1LQBz0ZR2eu7UoQ3TrQ9ZHD9Gt3DoMi43AyaF1AE5X17v9veXMvYqVW8T9xQTrPrahUoL6u27QuE0iAugJZ_QUCRMkc</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Klein-Geltink, J.E</creator><creator>Rochon, P.A</creator><creator>Dyer, S</creator><creator>Laxer, M</creator><creator>Anderson, G.M</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20070801</creationdate><title>Readers should systematically assess methods used to identify, measure and analyze confounding in observational cohort studies</title><author>Klein-Geltink, J.E ; Rochon, P.A ; Dyer, S ; Laxer, M ; Anderson, G.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-916ee6ca42452a15561fece04e61ce32f8e0baa4744f78a130d6f69e92ba3a503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Administrative data</topic><topic>Biological and medical sciences</topic><topic>Clinical trials</topic><topic>Cohort analysis</topic><topic>Cohort Studies</topic><topic>Confounding factors (Epidemiology)</topic><topic>Drug studies</topic><topic>Epidemiology</topic><topic>General aspects</topic><topic>Guideline (PT)</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Literature reviews</topic><topic>Medical sciences</topic><topic>Methodology</topic><topic>Miscellaneous</topic><topic>Observation</topic><topic>Observational studies</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Qualitative Research</topic><topic>Research Design</topic><topic>Retrospective studies</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein-Geltink, J.E</creatorcontrib><creatorcontrib>Rochon, P.A</creatorcontrib><creatorcontrib>Dyer, S</creatorcontrib><creatorcontrib>Laxer, M</creatorcontrib><creatorcontrib>Anderson, G.M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein-Geltink, J.E</au><au>Rochon, P.A</au><au>Dyer, S</au><au>Laxer, M</au><au>Anderson, G.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Readers should systematically assess methods used to identify, measure and analyze confounding in observational cohort studies</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>60</volume><issue>8</issue><spage>766.e1</spage><epage>766.e11</epage><pages>766.e1-766.e11</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>Abstract Objective To describe techniques used to address confounding in published observational studies. Study Design and Setting A systematic literature review identified studies using administrative or registry data to investigate health effects of drug therapies. Studies published from January 2001 to December 2005 came from BMJ, New England Journal of Medicine, Lancet, Annals of Internal Medicine, and JAMA. A structured abstraction form was used to collect information about confounding. Results The search identified 29 studies. Twenty-two studies (76%) had 10,000 or more subjects and 18 (62%) used a mortality outcome. None mentioned use of a literature search to identify confounders, however, 28 (97%) listed confounders included, and 26 (90%) listed confounders not included in the study. Eighteen (62.1%) discussed the validity of confounder data. Most (22, or 76%) studies included a table with the distribution of confounders but none used effect size to assess imbalance between comparison groups. Almost all studies used regression techniques (28, or 97%); fewer used stratification (16, or 55%) or matching (four, or 14%) to address confounding. Eleven (40%) studies discussed sensitivity analyses. Conclusion Published cohort studies routinely include a list of potential confounders but there is room for improvement in confounder identification, measurement, and analysis.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>17606171</pmid><doi>10.1016/j.jclinepi.2006.11.008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4356
ispartof Journal of clinical epidemiology, 2007-08, Vol.60 (8), p.766.e1-766.e11
issn 0895-4356
1878-5921
language eng
recordid cdi_proquest_miscellaneous_70691984
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Administrative data
Biological and medical sciences
Clinical trials
Cohort analysis
Cohort Studies
Confounding factors (Epidemiology)
Drug studies
Epidemiology
General aspects
Guideline (PT)
Humans
Internal Medicine
Literature reviews
Medical sciences
Methodology
Miscellaneous
Observation
Observational studies
Public health. Hygiene
Public health. Hygiene-occupational medicine
Qualitative Research
Research Design
Retrospective studies
Sensitivity analysis
Statistical methods
Variables
title Readers should systematically assess methods used to identify, measure and analyze confounding in observational cohort studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Readers%20should%20systematically%20assess%20methods%20used%20to%20identify,%20measure%20and%20analyze%20confounding%20in%20observational%20cohort%20studies&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Klein-Geltink,%20J.E&rft.date=2007-08-01&rft.volume=60&rft.issue=8&rft.spage=766.e1&rft.epage=766.e11&rft.pages=766.e1-766.e11&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2006.11.008&rft_dat=%3Cproquest_cross%3E70691984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033286766&rft_id=info:pmid/17606171&rft_els_id=1_s2_0_S0895435606004306&rfr_iscdi=true