Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications
A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2007-09, Vol.59 (1), p.67-73 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 59 |
creator | Yeh, Po-Ying J. Kizhakkedathu, Jayachandran N. Madden, John D. Chiao, Mu |
description | A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58
±
5.5% and 39
±
5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43
±
9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment. |
doi_str_mv | 10.1016/j.colsurfb.2007.04.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70689056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776507001713</els_id><sourcerecordid>20720086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-10f9664feddc788825f30382f836fb37c85c4aa0f56fd0776ca8b203c152daf03</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZp_0LwqTc7I8mWtLeWkH5AoJf2LGRpVLRoJVeyA_331Wa39JjTy8AzM8w8hNxSGChQcXcYbI51K34eGIAcYBxavCI7qiTvRy7ka7KDPZO9lGK6Ite1HgCAjVS-JVdUTpwJynYkPkS0awm28wGj60xy3VOYi1lDTr2pNdQVXZdMysfc0C1i57DmspyAZ9ykNfRzyD5vMaRfnc-la2XF1LDOLEsM9nlcfUfeeBMrvr_kDfn5-eHH_df-8fuXb_efHnvL93LtKfi9EKNH56xUSrHJc-CKecWFn7m0arKjMeAn4R20-6xRMwNu6cSc8cBvyIfz3KXk3xvWVR9DtRijSZi3qiUItYdJvAgykO276gSKM2hLrrWg10sJR1P-aAr6JEQf9D8h-iREw6hbtMbby4ZtPqL733Yx0ICPZwDbQ54CFl1twGTRhdLMaJfDSzv-AiQOopU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20720086</pqid></control><display><type>article</type><title>Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yeh, Po-Ying J. ; Kizhakkedathu, Jayachandran N. ; Madden, John D. ; Chiao, Mu</creator><creatorcontrib>Yeh, Po-Ying J. ; Kizhakkedathu, Jayachandran N. ; Madden, John D. ; Chiao, Mu</creatorcontrib><description>A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58
±
5.5% and 39
±
5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43
±
9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2007.04.007</identifier><identifier>PMID: 17532612</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adsorption ; Animals ; Anti-biofouling ; Biosensing Techniques - methods ; Bovine serum albumin ; Cattle ; Electricity ; Immunoglobulin G - chemistry ; In Vitro Techniques ; Lead ; MEMS ; Mice ; Nanoparticles - chemistry ; Nanotechnology ; Protein-desorption ; Protein-surface interaction ; PZT ; Serum Albumin, Bovine - chemistry ; Shear stress ; Silver ; Static Electricity ; Surface charge ; Surface Properties ; Thermodynamics ; Titanium ; Vibration ; Zirconium</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2007-09, Vol.59 (1), p.67-73</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-10f9664feddc788825f30382f836fb37c85c4aa0f56fd0776ca8b203c152daf03</citedby><cites>FETCH-LOGICAL-c397t-10f9664feddc788825f30382f836fb37c85c4aa0f56fd0776ca8b203c152daf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776507001713$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17532612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, Po-Ying J.</creatorcontrib><creatorcontrib>Kizhakkedathu, Jayachandran N.</creatorcontrib><creatorcontrib>Madden, John D.</creatorcontrib><creatorcontrib>Chiao, Mu</creatorcontrib><title>Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58
±
5.5% and 39
±
5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43
±
9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Anti-biofouling</subject><subject>Biosensing Techniques - methods</subject><subject>Bovine serum albumin</subject><subject>Cattle</subject><subject>Electricity</subject><subject>Immunoglobulin G - chemistry</subject><subject>In Vitro Techniques</subject><subject>Lead</subject><subject>MEMS</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Protein-desorption</subject><subject>Protein-surface interaction</subject><subject>PZT</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Shear stress</subject><subject>Silver</subject><subject>Static Electricity</subject><subject>Surface charge</subject><subject>Surface Properties</subject><subject>Thermodynamics</subject><subject>Titanium</subject><subject>Vibration</subject><subject>Zirconium</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaTZp_0LwqTc7I8mWtLeWkH5AoJf2LGRpVLRoJVeyA_331Wa39JjTy8AzM8w8hNxSGChQcXcYbI51K34eGIAcYBxavCI7qiTvRy7ka7KDPZO9lGK6Ite1HgCAjVS-JVdUTpwJynYkPkS0awm28wGj60xy3VOYi1lDTr2pNdQVXZdMysfc0C1i57DmspyAZ9ykNfRzyD5vMaRfnc-la2XF1LDOLEsM9nlcfUfeeBMrvr_kDfn5-eHH_df-8fuXb_efHnvL93LtKfi9EKNH56xUSrHJc-CKecWFn7m0arKjMeAn4R20-6xRMwNu6cSc8cBvyIfz3KXk3xvWVR9DtRijSZi3qiUItYdJvAgykO276gSKM2hLrrWg10sJR1P-aAr6JEQf9D8h-iREw6hbtMbby4ZtPqL733Yx0ICPZwDbQ54CFl1twGTRhdLMaJfDSzv-AiQOopU</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Yeh, Po-Ying J.</creator><creator>Kizhakkedathu, Jayachandran N.</creator><creator>Madden, John D.</creator><creator>Chiao, Mu</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications</title><author>Yeh, Po-Ying J. ; Kizhakkedathu, Jayachandran N. ; Madden, John D. ; Chiao, Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-10f9664feddc788825f30382f836fb37c85c4aa0f56fd0776ca8b203c152daf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Anti-biofouling</topic><topic>Biosensing Techniques - methods</topic><topic>Bovine serum albumin</topic><topic>Cattle</topic><topic>Electricity</topic><topic>Immunoglobulin G - chemistry</topic><topic>In Vitro Techniques</topic><topic>Lead</topic><topic>MEMS</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Protein-desorption</topic><topic>Protein-surface interaction</topic><topic>PZT</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Shear stress</topic><topic>Silver</topic><topic>Static Electricity</topic><topic>Surface charge</topic><topic>Surface Properties</topic><topic>Thermodynamics</topic><topic>Titanium</topic><topic>Vibration</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Po-Ying J.</creatorcontrib><creatorcontrib>Kizhakkedathu, Jayachandran N.</creatorcontrib><creatorcontrib>Madden, John D.</creatorcontrib><creatorcontrib>Chiao, Mu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Po-Ying J.</au><au>Kizhakkedathu, Jayachandran N.</au><au>Madden, John D.</au><au>Chiao, Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>59</volume><issue>1</issue><spage>67</spage><epage>73</epage><pages>67-73</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58
±
5.5% and 39
±
5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43
±
9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17532612</pmid><doi>10.1016/j.colsurfb.2007.04.007</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2007-09, Vol.59 (1), p.67-73 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_proquest_miscellaneous_70689056 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adsorption Animals Anti-biofouling Biosensing Techniques - methods Bovine serum albumin Cattle Electricity Immunoglobulin G - chemistry In Vitro Techniques Lead MEMS Mice Nanoparticles - chemistry Nanotechnology Protein-desorption Protein-surface interaction PZT Serum Albumin, Bovine - chemistry Shear stress Silver Static Electricity Surface charge Surface Properties Thermodynamics Titanium Vibration Zirconium |
title | Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20and%20vibration-assisted%20nanomolecule%20desorption%20and%20anti-biofouling%20for%20biosensor%20applications&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Yeh,%20Po-Ying%20J.&rft.date=2007-09-01&rft.volume=59&rft.issue=1&rft.spage=67&rft.epage=73&rft.pages=67-73&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2007.04.007&rft_dat=%3Cproquest_cross%3E20720086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20720086&rft_id=info:pmid/17532612&rft_els_id=S0927776507001713&rfr_iscdi=true |