Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications

A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2007-09, Vol.59 (1), p.67-73
Hauptverfasser: Yeh, Po-Ying J., Kizhakkedathu, Jayachandran N., Madden, John D., Chiao, Mu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 67
container_title Colloids and surfaces, B, Biointerfaces
container_volume 59
creator Yeh, Po-Ying J.
Kizhakkedathu, Jayachandran N.
Madden, John D.
Chiao, Mu
description A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58 ± 5.5% and 39 ± 5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43 ± 9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment.
doi_str_mv 10.1016/j.colsurfb.2007.04.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70689056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776507001713</els_id><sourcerecordid>20720086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-10f9664feddc788825f30382f836fb37c85c4aa0f56fd0776ca8b203c152daf03</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZp_0LwqTc7I8mWtLeWkH5AoJf2LGRpVLRoJVeyA_331Wa39JjTy8AzM8w8hNxSGChQcXcYbI51K34eGIAcYBxavCI7qiTvRy7ka7KDPZO9lGK6Ite1HgCAjVS-JVdUTpwJynYkPkS0awm28wGj60xy3VOYi1lDTr2pNdQVXZdMysfc0C1i57DmspyAZ9ykNfRzyD5vMaRfnc-la2XF1LDOLEsM9nlcfUfeeBMrvr_kDfn5-eHH_df-8fuXb_efHnvL93LtKfi9EKNH56xUSrHJc-CKecWFn7m0arKjMeAn4R20-6xRMwNu6cSc8cBvyIfz3KXk3xvWVR9DtRijSZi3qiUItYdJvAgykO276gSKM2hLrrWg10sJR1P-aAr6JEQf9D8h-iREw6hbtMbby4ZtPqL733Yx0ICPZwDbQ54CFl1twGTRhdLMaJfDSzv-AiQOopU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20720086</pqid></control><display><type>article</type><title>Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yeh, Po-Ying J. ; Kizhakkedathu, Jayachandran N. ; Madden, John D. ; Chiao, Mu</creator><creatorcontrib>Yeh, Po-Ying J. ; Kizhakkedathu, Jayachandran N. ; Madden, John D. ; Chiao, Mu</creatorcontrib><description>A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58 ± 5.5% and 39 ± 5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43 ± 9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2007.04.007</identifier><identifier>PMID: 17532612</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adsorption ; Animals ; Anti-biofouling ; Biosensing Techniques - methods ; Bovine serum albumin ; Cattle ; Electricity ; Immunoglobulin G - chemistry ; In Vitro Techniques ; Lead ; MEMS ; Mice ; Nanoparticles - chemistry ; Nanotechnology ; Protein-desorption ; Protein-surface interaction ; PZT ; Serum Albumin, Bovine - chemistry ; Shear stress ; Silver ; Static Electricity ; Surface charge ; Surface Properties ; Thermodynamics ; Titanium ; Vibration ; Zirconium</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2007-09, Vol.59 (1), p.67-73</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-10f9664feddc788825f30382f836fb37c85c4aa0f56fd0776ca8b203c152daf03</citedby><cites>FETCH-LOGICAL-c397t-10f9664feddc788825f30382f836fb37c85c4aa0f56fd0776ca8b203c152daf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776507001713$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17532612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, Po-Ying J.</creatorcontrib><creatorcontrib>Kizhakkedathu, Jayachandran N.</creatorcontrib><creatorcontrib>Madden, John D.</creatorcontrib><creatorcontrib>Chiao, Mu</creatorcontrib><title>Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58 ± 5.5% and 39 ± 5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43 ± 9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Anti-biofouling</subject><subject>Biosensing Techniques - methods</subject><subject>Bovine serum albumin</subject><subject>Cattle</subject><subject>Electricity</subject><subject>Immunoglobulin G - chemistry</subject><subject>In Vitro Techniques</subject><subject>Lead</subject><subject>MEMS</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Protein-desorption</subject><subject>Protein-surface interaction</subject><subject>PZT</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Shear stress</subject><subject>Silver</subject><subject>Static Electricity</subject><subject>Surface charge</subject><subject>Surface Properties</subject><subject>Thermodynamics</subject><subject>Titanium</subject><subject>Vibration</subject><subject>Zirconium</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaTZp_0LwqTc7I8mWtLeWkH5AoJf2LGRpVLRoJVeyA_331Wa39JjTy8AzM8w8hNxSGChQcXcYbI51K34eGIAcYBxavCI7qiTvRy7ka7KDPZO9lGK6Ite1HgCAjVS-JVdUTpwJynYkPkS0awm28wGj60xy3VOYi1lDTr2pNdQVXZdMysfc0C1i57DmspyAZ9ykNfRzyD5vMaRfnc-la2XF1LDOLEsM9nlcfUfeeBMrvr_kDfn5-eHH_df-8fuXb_efHnvL93LtKfi9EKNH56xUSrHJc-CKecWFn7m0arKjMeAn4R20-6xRMwNu6cSc8cBvyIfz3KXk3xvWVR9DtRijSZi3qiUItYdJvAgykO276gSKM2hLrrWg10sJR1P-aAr6JEQf9D8h-iREw6hbtMbby4ZtPqL733Yx0ICPZwDbQ54CFl1twGTRhdLMaJfDSzv-AiQOopU</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Yeh, Po-Ying J.</creator><creator>Kizhakkedathu, Jayachandran N.</creator><creator>Madden, John D.</creator><creator>Chiao, Mu</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications</title><author>Yeh, Po-Ying J. ; Kizhakkedathu, Jayachandran N. ; Madden, John D. ; Chiao, Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-10f9664feddc788825f30382f836fb37c85c4aa0f56fd0776ca8b203c152daf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Anti-biofouling</topic><topic>Biosensing Techniques - methods</topic><topic>Bovine serum albumin</topic><topic>Cattle</topic><topic>Electricity</topic><topic>Immunoglobulin G - chemistry</topic><topic>In Vitro Techniques</topic><topic>Lead</topic><topic>MEMS</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Protein-desorption</topic><topic>Protein-surface interaction</topic><topic>PZT</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Shear stress</topic><topic>Silver</topic><topic>Static Electricity</topic><topic>Surface charge</topic><topic>Surface Properties</topic><topic>Thermodynamics</topic><topic>Titanium</topic><topic>Vibration</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Po-Ying J.</creatorcontrib><creatorcontrib>Kizhakkedathu, Jayachandran N.</creatorcontrib><creatorcontrib>Madden, John D.</creatorcontrib><creatorcontrib>Chiao, Mu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Po-Ying J.</au><au>Kizhakkedathu, Jayachandran N.</au><au>Madden, John D.</au><au>Chiao, Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>59</volume><issue>1</issue><spage>67</spage><epage>73</epage><pages>67-73</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58 ± 5.5% and 39 ± 5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43 ± 9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17532612</pmid><doi>10.1016/j.colsurfb.2007.04.007</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2007-09, Vol.59 (1), p.67-73
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_70689056
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adsorption
Animals
Anti-biofouling
Biosensing Techniques - methods
Bovine serum albumin
Cattle
Electricity
Immunoglobulin G - chemistry
In Vitro Techniques
Lead
MEMS
Mice
Nanoparticles - chemistry
Nanotechnology
Protein-desorption
Protein-surface interaction
PZT
Serum Albumin, Bovine - chemistry
Shear stress
Silver
Static Electricity
Surface charge
Surface Properties
Thermodynamics
Titanium
Vibration
Zirconium
title Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20and%20vibration-assisted%20nanomolecule%20desorption%20and%20anti-biofouling%20for%20biosensor%20applications&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Yeh,%20Po-Ying%20J.&rft.date=2007-09-01&rft.volume=59&rft.issue=1&rft.spage=67&rft.epage=73&rft.pages=67-73&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2007.04.007&rft_dat=%3Cproquest_cross%3E20720086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20720086&rft_id=info:pmid/17532612&rft_els_id=S0927776507001713&rfr_iscdi=true