Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex

Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-01, Vol.103 (2), p.305-310
Hauptverfasser: Adams, Jarrett J., Pal, Gour, Jia, Zongchao, Smith, Steven P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 2
container_start_page 305
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Adams, Jarrett J.
Pal, Gour
Jia, Zongchao
Smith, Steven P.
description Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity $(K_{a} = 1.44 x 10^{10} M^{-1})$ complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cellsurface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.
doi_str_mv 10.1073/pnas.0507109103
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70687798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30048297</jstor_id><sourcerecordid>30048297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-e3dfebbcac73ff7b2610032b4fe6bdb76d044f7d467bd6bccef3365560b13cc93</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAkUOHBLO44TO7kgleVrpSIkWs6W7YxJliQOtlN1_3sc7apbEBInW_bvvdEbvSR5TuCMAKfn0yj9GZTACdQE6INktVwyVtTwMFkB5Dyrirw4SZ54vwWAuqzgcXJCGK2KmlSrZPcFdSvHzg-pNek7qQO6TvbpGvs-u5qdkRrTixCkbgccQ_oNb1D22KRql4YW06vgZh1mh4t8Ec299XaIDte7CdPNJl3bFn03Zu-t_hm9x_gwTD3ePk0eGdl7fHY4T5PvHz9crz9nl18_bdYXl5lmhIUMaWNQKS01p8ZwlTMCQHNVGGSqUZw1UBSGNwXjqmFKazSUsrJkoAjVuqanydu97zSrARsdUzjZi8l1g3Q7YWUn_vwZu1b8sDeC0DiLkWjwam9gfeiE112IK9N2HFEHUVMgOY3Mm8MQZ3_N6IMYOq_jOuSIdvaCA6s4r6v_goQXC7lMff0XuLWzG-OmRA6EVrQql2zne0g7671DcxeLgFgKIpaCiGNBouLl_W0c-UMjIvDiACzKox0VuaBQ3gvwz39h5r4PeBuORlsfrLsjKUBR5TWnvwH1ZNmr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201383859</pqid></control><display><type>article</type><title>Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Adams, Jarrett J. ; Pal, Gour ; Jia, Zongchao ; Smith, Steven P.</creator><creatorcontrib>Adams, Jarrett J. ; Pal, Gour ; Jia, Zongchao ; Smith, Steven P. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity $(K_{a} = 1.44 x 10^{10} M^{-1})$ complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cellsurface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0507109103</identifier><identifier>PMID: 16384918</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anaerobic bacteria ; BACTERIA ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Biological Sciences ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; CELL WALL ; Cells ; Cellulose ; Cellulosomes ; Cellulosomes - chemistry ; Cellulosomes - metabolism ; CLOSTRIDIUM THERMOCELLUM ; Clostridium thermocellum - chemistry ; Clostridium thermocellum - genetics ; Clostridium thermocellum - metabolism ; COMPLEXES ; Crystal structure ; Crystallography, X-Ray ; Enzymes ; FACE ; Hydrogen bonds ; INTERACTIONS ; MICROORGANISMS ; Models, Molecular ; Molecules ; national synchrotron light source ; PLANTS ; POLYSACCHARIDES ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; PROTEINS ; RETENTION ; STABILITY ; SUBSTRATES ; SURFACES ; Topology ; UPTAKE</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (2), p.305-310</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 10, 2006</rights><rights>Copyright © 2006, The National Academy of Sciences 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-e3dfebbcac73ff7b2610032b4fe6bdb76d044f7d467bd6bccef3365560b13cc93</citedby><cites>FETCH-LOGICAL-c616t-e3dfebbcac73ff7b2610032b4fe6bdb76d044f7d467bd6bccef3365560b13cc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30048297$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30048297$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16384918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/930123$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, Jarrett J.</creatorcontrib><creatorcontrib>Pal, Gour</creatorcontrib><creatorcontrib>Jia, Zongchao</creatorcontrib><creatorcontrib>Smith, Steven P.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity $(K_{a} = 1.44 x 10^{10} M^{-1})$ complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cellsurface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.</description><subject>Anaerobic bacteria</subject><subject>BACTERIA</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>CELL WALL</subject><subject>Cells</subject><subject>Cellulose</subject><subject>Cellulosomes</subject><subject>Cellulosomes - chemistry</subject><subject>Cellulosomes - metabolism</subject><subject>CLOSTRIDIUM THERMOCELLUM</subject><subject>Clostridium thermocellum - chemistry</subject><subject>Clostridium thermocellum - genetics</subject><subject>Clostridium thermocellum - metabolism</subject><subject>COMPLEXES</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>FACE</subject><subject>Hydrogen bonds</subject><subject>INTERACTIONS</subject><subject>MICROORGANISMS</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>national synchrotron light source</subject><subject>PLANTS</subject><subject>POLYSACCHARIDES</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>RETENTION</subject><subject>STABILITY</subject><subject>SUBSTRATES</subject><subject>SURFACES</subject><subject>Topology</subject><subject>UPTAKE</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEokvhzAkUOHBLO44TO7kgleVrpSIkWs6W7YxJliQOtlN1_3sc7apbEBInW_bvvdEbvSR5TuCMAKfn0yj9GZTACdQE6INktVwyVtTwMFkB5Dyrirw4SZ54vwWAuqzgcXJCGK2KmlSrZPcFdSvHzg-pNek7qQO6TvbpGvs-u5qdkRrTixCkbgccQ_oNb1D22KRql4YW06vgZh1mh4t8Ec299XaIDte7CdPNJl3bFn03Zu-t_hm9x_gwTD3ePk0eGdl7fHY4T5PvHz9crz9nl18_bdYXl5lmhIUMaWNQKS01p8ZwlTMCQHNVGGSqUZw1UBSGNwXjqmFKazSUsrJkoAjVuqanydu97zSrARsdUzjZi8l1g3Q7YWUn_vwZu1b8sDeC0DiLkWjwam9gfeiE112IK9N2HFEHUVMgOY3Mm8MQZ3_N6IMYOq_jOuSIdvaCA6s4r6v_goQXC7lMff0XuLWzG-OmRA6EVrQql2zne0g7671DcxeLgFgKIpaCiGNBouLl_W0c-UMjIvDiACzKox0VuaBQ3gvwz39h5r4PeBuORlsfrLsjKUBR5TWnvwH1ZNmr</recordid><startdate>20060110</startdate><enddate>20060110</enddate><creator>Adams, Jarrett J.</creator><creator>Pal, Gour</creator><creator>Jia, Zongchao</creator><creator>Smith, Steven P.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20060110</creationdate><title>Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex</title><author>Adams, Jarrett J. ; Pal, Gour ; Jia, Zongchao ; Smith, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-e3dfebbcac73ff7b2610032b4fe6bdb76d044f7d467bd6bccef3365560b13cc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anaerobic bacteria</topic><topic>BACTERIA</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>CELL WALL</topic><topic>Cells</topic><topic>Cellulose</topic><topic>Cellulosomes</topic><topic>Cellulosomes - chemistry</topic><topic>Cellulosomes - metabolism</topic><topic>CLOSTRIDIUM THERMOCELLUM</topic><topic>Clostridium thermocellum - chemistry</topic><topic>Clostridium thermocellum - genetics</topic><topic>Clostridium thermocellum - metabolism</topic><topic>COMPLEXES</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>FACE</topic><topic>Hydrogen bonds</topic><topic>INTERACTIONS</topic><topic>MICROORGANISMS</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>national synchrotron light source</topic><topic>PLANTS</topic><topic>POLYSACCHARIDES</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>RETENTION</topic><topic>STABILITY</topic><topic>SUBSTRATES</topic><topic>SURFACES</topic><topic>Topology</topic><topic>UPTAKE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Jarrett J.</creatorcontrib><creatorcontrib>Pal, Gour</creatorcontrib><creatorcontrib>Jia, Zongchao</creatorcontrib><creatorcontrib>Smith, Steven P.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Jarrett J.</au><au>Pal, Gour</au><au>Jia, Zongchao</au><au>Smith, Steven P.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-01-10</date><risdate>2006</risdate><volume>103</volume><issue>2</issue><spage>305</spage><epage>310</epage><pages>305-310</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity $(K_{a} = 1.44 x 10^{10} M^{-1})$ complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cellsurface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16384918</pmid><doi>10.1073/pnas.0507109103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (2), p.305-310
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_70687798
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anaerobic bacteria
BACTERIA
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
BASIC BIOLOGICAL SCIENCES
Biochemistry
Biological Sciences
Cell Membrane - chemistry
Cell Membrane - metabolism
CELL WALL
Cells
Cellulose
Cellulosomes
Cellulosomes - chemistry
Cellulosomes - metabolism
CLOSTRIDIUM THERMOCELLUM
Clostridium thermocellum - chemistry
Clostridium thermocellum - genetics
Clostridium thermocellum - metabolism
COMPLEXES
Crystal structure
Crystallography, X-Ray
Enzymes
FACE
Hydrogen bonds
INTERACTIONS
MICROORGANISMS
Models, Molecular
Molecules
national synchrotron light source
PLANTS
POLYSACCHARIDES
Protein Binding
Protein Structure, Quaternary
Protein Structure, Tertiary
PROTEINS
RETENTION
STABILITY
SUBSTRATES
SURFACES
Topology
UPTAKE
title Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Bacterial%20Cell-Surface%20Attachment%20Revealed%20by%20the%20Structure%20of%20Cellulosomal%20Type%20II%20Cohesin-Dockerin%20Complex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Adams,%20Jarrett%20J.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2006-01-10&rft.volume=103&rft.issue=2&rft.spage=305&rft.epage=310&rft.pages=305-310&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0507109103&rft_dat=%3Cjstor_proqu%3E30048297%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201383859&rft_id=info:pmid/16384918&rft_jstor_id=30048297&rfr_iscdi=true