Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex
Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradatio...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2006-01, Vol.103 (2), p.305-310 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | 2 |
container_start_page | 305 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Adams, Jarrett J. Pal, Gour Jia, Zongchao Smith, Steven P. |
description | Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity $(K_{a} = 1.44 x 10^{10} M^{-1})$ complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cellsurface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules. |
doi_str_mv | 10.1073/pnas.0507109103 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70687798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30048297</jstor_id><sourcerecordid>30048297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-e3dfebbcac73ff7b2610032b4fe6bdb76d044f7d467bd6bccef3365560b13cc93</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAkUOHBLO44TO7kgleVrpSIkWs6W7YxJliQOtlN1_3sc7apbEBInW_bvvdEbvSR5TuCMAKfn0yj9GZTACdQE6INktVwyVtTwMFkB5Dyrirw4SZ54vwWAuqzgcXJCGK2KmlSrZPcFdSvHzg-pNek7qQO6TvbpGvs-u5qdkRrTixCkbgccQ_oNb1D22KRql4YW06vgZh1mh4t8Ec299XaIDte7CdPNJl3bFn03Zu-t_hm9x_gwTD3ePk0eGdl7fHY4T5PvHz9crz9nl18_bdYXl5lmhIUMaWNQKS01p8ZwlTMCQHNVGGSqUZw1UBSGNwXjqmFKazSUsrJkoAjVuqanydu97zSrARsdUzjZi8l1g3Q7YWUn_vwZu1b8sDeC0DiLkWjwam9gfeiE112IK9N2HFEHUVMgOY3Mm8MQZ3_N6IMYOq_jOuSIdvaCA6s4r6v_goQXC7lMff0XuLWzG-OmRA6EVrQql2zne0g7671DcxeLgFgKIpaCiGNBouLl_W0c-UMjIvDiACzKox0VuaBQ3gvwz39h5r4PeBuORlsfrLsjKUBR5TWnvwH1ZNmr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201383859</pqid></control><display><type>article</type><title>Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Adams, Jarrett J. ; Pal, Gour ; Jia, Zongchao ; Smith, Steven P.</creator><creatorcontrib>Adams, Jarrett J. ; Pal, Gour ; Jia, Zongchao ; Smith, Steven P. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity $(K_{a} = 1.44 x 10^{10} M^{-1})$ complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cellsurface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0507109103</identifier><identifier>PMID: 16384918</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anaerobic bacteria ; BACTERIA ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Biological Sciences ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; CELL WALL ; Cells ; Cellulose ; Cellulosomes ; Cellulosomes - chemistry ; Cellulosomes - metabolism ; CLOSTRIDIUM THERMOCELLUM ; Clostridium thermocellum - chemistry ; Clostridium thermocellum - genetics ; Clostridium thermocellum - metabolism ; COMPLEXES ; Crystal structure ; Crystallography, X-Ray ; Enzymes ; FACE ; Hydrogen bonds ; INTERACTIONS ; MICROORGANISMS ; Models, Molecular ; Molecules ; national synchrotron light source ; PLANTS ; POLYSACCHARIDES ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; PROTEINS ; RETENTION ; STABILITY ; SUBSTRATES ; SURFACES ; Topology ; UPTAKE</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (2), p.305-310</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 10, 2006</rights><rights>Copyright © 2006, The National Academy of Sciences 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-e3dfebbcac73ff7b2610032b4fe6bdb76d044f7d467bd6bccef3365560b13cc93</citedby><cites>FETCH-LOGICAL-c616t-e3dfebbcac73ff7b2610032b4fe6bdb76d044f7d467bd6bccef3365560b13cc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30048297$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30048297$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16384918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/930123$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, Jarrett J.</creatorcontrib><creatorcontrib>Pal, Gour</creatorcontrib><creatorcontrib>Jia, Zongchao</creatorcontrib><creatorcontrib>Smith, Steven P.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity $(K_{a} = 1.44 x 10^{10} M^{-1})$ complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cellsurface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.</description><subject>Anaerobic bacteria</subject><subject>BACTERIA</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>CELL WALL</subject><subject>Cells</subject><subject>Cellulose</subject><subject>Cellulosomes</subject><subject>Cellulosomes - chemistry</subject><subject>Cellulosomes - metabolism</subject><subject>CLOSTRIDIUM THERMOCELLUM</subject><subject>Clostridium thermocellum - chemistry</subject><subject>Clostridium thermocellum - genetics</subject><subject>Clostridium thermocellum - metabolism</subject><subject>COMPLEXES</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>FACE</subject><subject>Hydrogen bonds</subject><subject>INTERACTIONS</subject><subject>MICROORGANISMS</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>national synchrotron light source</subject><subject>PLANTS</subject><subject>POLYSACCHARIDES</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>RETENTION</subject><subject>STABILITY</subject><subject>SUBSTRATES</subject><subject>SURFACES</subject><subject>Topology</subject><subject>UPTAKE</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEokvhzAkUOHBLO44TO7kgleVrpSIkWs6W7YxJliQOtlN1_3sc7apbEBInW_bvvdEbvSR5TuCMAKfn0yj9GZTACdQE6INktVwyVtTwMFkB5Dyrirw4SZ54vwWAuqzgcXJCGK2KmlSrZPcFdSvHzg-pNek7qQO6TvbpGvs-u5qdkRrTixCkbgccQ_oNb1D22KRql4YW06vgZh1mh4t8Ec299XaIDte7CdPNJl3bFn03Zu-t_hm9x_gwTD3ePk0eGdl7fHY4T5PvHz9crz9nl18_bdYXl5lmhIUMaWNQKS01p8ZwlTMCQHNVGGSqUZw1UBSGNwXjqmFKazSUsrJkoAjVuqanydu97zSrARsdUzjZi8l1g3Q7YWUn_vwZu1b8sDeC0DiLkWjwam9gfeiE112IK9N2HFEHUVMgOY3Mm8MQZ3_N6IMYOq_jOuSIdvaCA6s4r6v_goQXC7lMff0XuLWzG-OmRA6EVrQql2zne0g7671DcxeLgFgKIpaCiGNBouLl_W0c-UMjIvDiACzKox0VuaBQ3gvwz39h5r4PeBuORlsfrLsjKUBR5TWnvwH1ZNmr</recordid><startdate>20060110</startdate><enddate>20060110</enddate><creator>Adams, Jarrett J.</creator><creator>Pal, Gour</creator><creator>Jia, Zongchao</creator><creator>Smith, Steven P.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20060110</creationdate><title>Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex</title><author>Adams, Jarrett J. ; Pal, Gour ; Jia, Zongchao ; Smith, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-e3dfebbcac73ff7b2610032b4fe6bdb76d044f7d467bd6bccef3365560b13cc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anaerobic bacteria</topic><topic>BACTERIA</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>CELL WALL</topic><topic>Cells</topic><topic>Cellulose</topic><topic>Cellulosomes</topic><topic>Cellulosomes - chemistry</topic><topic>Cellulosomes - metabolism</topic><topic>CLOSTRIDIUM THERMOCELLUM</topic><topic>Clostridium thermocellum - chemistry</topic><topic>Clostridium thermocellum - genetics</topic><topic>Clostridium thermocellum - metabolism</topic><topic>COMPLEXES</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>FACE</topic><topic>Hydrogen bonds</topic><topic>INTERACTIONS</topic><topic>MICROORGANISMS</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>national synchrotron light source</topic><topic>PLANTS</topic><topic>POLYSACCHARIDES</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>RETENTION</topic><topic>STABILITY</topic><topic>SUBSTRATES</topic><topic>SURFACES</topic><topic>Topology</topic><topic>UPTAKE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Jarrett J.</creatorcontrib><creatorcontrib>Pal, Gour</creatorcontrib><creatorcontrib>Jia, Zongchao</creatorcontrib><creatorcontrib>Smith, Steven P.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Jarrett J.</au><au>Pal, Gour</au><au>Jia, Zongchao</au><au>Smith, Steven P.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-01-10</date><risdate>2006</risdate><volume>103</volume><issue>2</issue><spage>305</spage><epage>310</epage><pages>305-310</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity $(K_{a} = 1.44 x 10^{10} M^{-1})$ complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cellsurface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16384918</pmid><doi>10.1073/pnas.0507109103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (2), p.305-310 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_70687798 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anaerobic bacteria BACTERIA Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism BASIC BIOLOGICAL SCIENCES Biochemistry Biological Sciences Cell Membrane - chemistry Cell Membrane - metabolism CELL WALL Cells Cellulose Cellulosomes Cellulosomes - chemistry Cellulosomes - metabolism CLOSTRIDIUM THERMOCELLUM Clostridium thermocellum - chemistry Clostridium thermocellum - genetics Clostridium thermocellum - metabolism COMPLEXES Crystal structure Crystallography, X-Ray Enzymes FACE Hydrogen bonds INTERACTIONS MICROORGANISMS Models, Molecular Molecules national synchrotron light source PLANTS POLYSACCHARIDES Protein Binding Protein Structure, Quaternary Protein Structure, Tertiary PROTEINS RETENTION STABILITY SUBSTRATES SURFACES Topology UPTAKE |
title | Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-Dockerin Complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Bacterial%20Cell-Surface%20Attachment%20Revealed%20by%20the%20Structure%20of%20Cellulosomal%20Type%20II%20Cohesin-Dockerin%20Complex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Adams,%20Jarrett%20J.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2006-01-10&rft.volume=103&rft.issue=2&rft.spage=305&rft.epage=310&rft.pages=305-310&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0507109103&rft_dat=%3Cjstor_proqu%3E30048297%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201383859&rft_id=info:pmid/16384918&rft_jstor_id=30048297&rfr_iscdi=true |