Theory of Time-Dependent Reactive Scattering: Cumulative Time-Evolving Differential Cross Sections and Nearside−Farside Analyses of Time-Dependent Scattering Amplitudes for the H + D2 → HD + D Reaction
Nearside−farside (NF) theory, originally developed in the energy domain for the time-independent description of molecular collisions and chemical reactions, is applied to the plane wave packet (PWP) formulation of time-dependent scattering. The NF theory decomposes the partial wave series representa...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-01, Vol.110 (2), p.741-748 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 748 |
---|---|
container_issue | 2 |
container_start_page | 741 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 110 |
creator | Monks, P. D. D Connor, J. N. L Althorpe, S. C |
description | Nearside−farside (NF) theory, originally developed in the energy domain for the time-independent description of molecular collisions and chemical reactions, is applied to the plane wave packet (PWP) formulation of time-dependent scattering. The NF theory decomposes the partial wave series representation for the time-dependent PWP scattering amplitude into two time-dependent subamplitudes: one N, the other F. In addition, NF local angular momentum (LAM) theory is applied to the PWP scattering amplitude. The novel concept of a cumulative time-evolving differential cross section is introduced, in which the upper infinite time limit of a half-Fourier transform is replaced by a finite time. In a similar way, a cumulative energy-evolving angular distribution is defined. Application is made to the state-to-state reaction, H + D2(v i = 0, j i = 0) → HD(v f = 3, j f = 0) + D, where v i, j i and v f, j f are vibrational and rotational quantum numbers for the initial and final states, respectively. This reaction exhibits time-direct and time-delayed (by about 25 fs) collision mechanisms. It is shown that the direct-time mechanism is N dominant scattering, whereas the time-delayed mechanism exhibits characteristics of NF interference. The NF and LAM theories provide valuable insights into the time-dependent properties of a reaction, as do snapshots from a movie of the cumulative time-evolving differential cross section. |
doi_str_mv | 10.1021/jp0556254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70681482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70681482</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-c8a3712e320e725c75aa93fc985822acee0559d3a3af83d781f38ef14321b2ec3</originalsourceid><addsrcrecordid>eNptkr1u1EAQxy0EIiFQ8AJoG2iQYT-85zXdyZfDSBFEOdPQrCb2mOxhe82ufeI6KgRtnoxnuCdhkztCQzV_6f-bD81MFD1l9BWjnL1eD1TKGZfJveiYSU5jyZm8HzRVWSxnIjuKHnm_ppQywZOH0RGbJVSKRB1Hv8srtG5LbENK02G8wAH7GvuRXCBUo9kgWVUwjuhM__nN7vsvkk_d1MKtc5txurHtJphkYZoGXUg10JLcWe_JCkMJ23sCfU3eIzhvatz9vF7uFZn30G49-v-0_9eVzLuhNeNUB66xjoxXSArykiw42f24JsXiRh_Gtf3j6EEDrccnh3gSfVyelnkRn314-y6fn8XAMj7GlQKRMo6CU0y5rFIJkImmypRUnEOFGFaa1QIENErUqWKNUNiwRHB2ybESJ9GLfd3B2a8T-lF3xlfYttCjnbxO6UyxRPEAPjuA02WHtR6c6cBt9d8bBCDeA8aP-O3OB_dFz1KRSl2er3RxvvxU5BelzgP_fM9D5fXaTi4s0WtG9c0v6LtfEH8ApHynVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70681482</pqid></control><display><type>article</type><title>Theory of Time-Dependent Reactive Scattering: Cumulative Time-Evolving Differential Cross Sections and Nearside−Farside Analyses of Time-Dependent Scattering Amplitudes for the H + D2 → HD + D Reaction</title><source>ACS Publications</source><creator>Monks, P. D. D ; Connor, J. N. L ; Althorpe, S. C</creator><creatorcontrib>Monks, P. D. D ; Connor, J. N. L ; Althorpe, S. C</creatorcontrib><description>Nearside−farside (NF) theory, originally developed in the energy domain for the time-independent description of molecular collisions and chemical reactions, is applied to the plane wave packet (PWP) formulation of time-dependent scattering. The NF theory decomposes the partial wave series representation for the time-dependent PWP scattering amplitude into two time-dependent subamplitudes: one N, the other F. In addition, NF local angular momentum (LAM) theory is applied to the PWP scattering amplitude. The novel concept of a cumulative time-evolving differential cross section is introduced, in which the upper infinite time limit of a half-Fourier transform is replaced by a finite time. In a similar way, a cumulative energy-evolving angular distribution is defined. Application is made to the state-to-state reaction, H + D2(v i = 0, j i = 0) → HD(v f = 3, j f = 0) + D, where v i, j i and v f, j f are vibrational and rotational quantum numbers for the initial and final states, respectively. This reaction exhibits time-direct and time-delayed (by about 25 fs) collision mechanisms. It is shown that the direct-time mechanism is N dominant scattering, whereas the time-delayed mechanism exhibits characteristics of NF interference. The NF and LAM theories provide valuable insights into the time-dependent properties of a reaction, as do snapshots from a movie of the cumulative time-evolving differential cross section.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp0556254</identifier><identifier>PMID: 16405348</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-01, Vol.110 (2), p.741-748</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0556254$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0556254$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16405348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monks, P. D. D</creatorcontrib><creatorcontrib>Connor, J. N. L</creatorcontrib><creatorcontrib>Althorpe, S. C</creatorcontrib><title>Theory of Time-Dependent Reactive Scattering: Cumulative Time-Evolving Differential Cross Sections and Nearside−Farside Analyses of Time-Dependent Scattering Amplitudes for the H + D2 → HD + D Reaction</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Nearside−farside (NF) theory, originally developed in the energy domain for the time-independent description of molecular collisions and chemical reactions, is applied to the plane wave packet (PWP) formulation of time-dependent scattering. The NF theory decomposes the partial wave series representation for the time-dependent PWP scattering amplitude into two time-dependent subamplitudes: one N, the other F. In addition, NF local angular momentum (LAM) theory is applied to the PWP scattering amplitude. The novel concept of a cumulative time-evolving differential cross section is introduced, in which the upper infinite time limit of a half-Fourier transform is replaced by a finite time. In a similar way, a cumulative energy-evolving angular distribution is defined. Application is made to the state-to-state reaction, H + D2(v i = 0, j i = 0) → HD(v f = 3, j f = 0) + D, where v i, j i and v f, j f are vibrational and rotational quantum numbers for the initial and final states, respectively. This reaction exhibits time-direct and time-delayed (by about 25 fs) collision mechanisms. It is shown that the direct-time mechanism is N dominant scattering, whereas the time-delayed mechanism exhibits characteristics of NF interference. The NF and LAM theories provide valuable insights into the time-dependent properties of a reaction, as do snapshots from a movie of the cumulative time-evolving differential cross section.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNptkr1u1EAQxy0EIiFQ8AJoG2iQYT-85zXdyZfDSBFEOdPQrCb2mOxhe82ufeI6KgRtnoxnuCdhkztCQzV_6f-bD81MFD1l9BWjnL1eD1TKGZfJveiYSU5jyZm8HzRVWSxnIjuKHnm_ppQywZOH0RGbJVSKRB1Hv8srtG5LbENK02G8wAH7GvuRXCBUo9kgWVUwjuhM__nN7vsvkk_d1MKtc5txurHtJphkYZoGXUg10JLcWe_JCkMJ23sCfU3eIzhvatz9vF7uFZn30G49-v-0_9eVzLuhNeNUB66xjoxXSArykiw42f24JsXiRh_Gtf3j6EEDrccnh3gSfVyelnkRn314-y6fn8XAMj7GlQKRMo6CU0y5rFIJkImmypRUnEOFGFaa1QIENErUqWKNUNiwRHB2ybESJ9GLfd3B2a8T-lF3xlfYttCjnbxO6UyxRPEAPjuA02WHtR6c6cBt9d8bBCDeA8aP-O3OB_dFz1KRSl2er3RxvvxU5BelzgP_fM9D5fXaTi4s0WtG9c0v6LtfEH8ApHynVg</recordid><startdate>20060119</startdate><enddate>20060119</enddate><creator>Monks, P. D. D</creator><creator>Connor, J. N. L</creator><creator>Althorpe, S. C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20060119</creationdate><title>Theory of Time-Dependent Reactive Scattering: Cumulative Time-Evolving Differential Cross Sections and Nearside−Farside Analyses of Time-Dependent Scattering Amplitudes for the H + D2 → HD + D Reaction</title><author>Monks, P. D. D ; Connor, J. N. L ; Althorpe, S. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-c8a3712e320e725c75aa93fc985822acee0559d3a3af83d781f38ef14321b2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monks, P. D. D</creatorcontrib><creatorcontrib>Connor, J. N. L</creatorcontrib><creatorcontrib>Althorpe, S. C</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monks, P. D. D</au><au>Connor, J. N. L</au><au>Althorpe, S. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Time-Dependent Reactive Scattering: Cumulative Time-Evolving Differential Cross Sections and Nearside−Farside Analyses of Time-Dependent Scattering Amplitudes for the H + D2 → HD + D Reaction</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2006-01-19</date><risdate>2006</risdate><volume>110</volume><issue>2</issue><spage>741</spage><epage>748</epage><pages>741-748</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Nearside−farside (NF) theory, originally developed in the energy domain for the time-independent description of molecular collisions and chemical reactions, is applied to the plane wave packet (PWP) formulation of time-dependent scattering. The NF theory decomposes the partial wave series representation for the time-dependent PWP scattering amplitude into two time-dependent subamplitudes: one N, the other F. In addition, NF local angular momentum (LAM) theory is applied to the PWP scattering amplitude. The novel concept of a cumulative time-evolving differential cross section is introduced, in which the upper infinite time limit of a half-Fourier transform is replaced by a finite time. In a similar way, a cumulative energy-evolving angular distribution is defined. Application is made to the state-to-state reaction, H + D2(v i = 0, j i = 0) → HD(v f = 3, j f = 0) + D, where v i, j i and v f, j f are vibrational and rotational quantum numbers for the initial and final states, respectively. This reaction exhibits time-direct and time-delayed (by about 25 fs) collision mechanisms. It is shown that the direct-time mechanism is N dominant scattering, whereas the time-delayed mechanism exhibits characteristics of NF interference. The NF and LAM theories provide valuable insights into the time-dependent properties of a reaction, as do snapshots from a movie of the cumulative time-evolving differential cross section.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16405348</pmid><doi>10.1021/jp0556254</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-01, Vol.110 (2), p.741-748 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_70681482 |
source | ACS Publications |
title | Theory of Time-Dependent Reactive Scattering: Cumulative Time-Evolving Differential Cross Sections and Nearside−Farside Analyses of Time-Dependent Scattering Amplitudes for the H + D2 → HD + D Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Time-Dependent%20Reactive%20Scattering:%E2%80%89%20Cumulative%20Time-Evolving%20Differential%20Cross%20Sections%20and%20Nearside%E2%88%92Farside%20Analyses%20of%20Time-Dependent%20Scattering%20Amplitudes%20for%20the%20H%20+%20D2%20%E2%86%92%20HD%20+%20D%20Reaction&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Monks,%20P.%20D.%20D&rft.date=2006-01-19&rft.volume=110&rft.issue=2&rft.spage=741&rft.epage=748&rft.pages=741-748&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp0556254&rft_dat=%3Cproquest_pubme%3E70681482%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70681482&rft_id=info:pmid/16405348&rfr_iscdi=true |