Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways
One of the prerequisites for the detailed understanding of heterogeneous catalysis is the identification of the dynamic response of the catalyst surface under variable reaction conditions. The present study of methanol oxidation on different model Ru pre-catalysts, performed approaching the realisti...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2007-01, Vol.9 (27), p.3648-3657 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the prerequisites for the detailed understanding of heterogeneous catalysis is the identification of the dynamic response of the catalyst surface under variable reaction conditions. The present study of methanol oxidation on different model Ru pre-catalysts, performed approaching the realistic catalytic reaction conditions, provides direct evidence of the significant effect of reactants' chemical potentials and temperature on the catalyst surface composition and the corresponding catalytic activity and selectivity. The experiments were carried out for three regimes of oxygen potentials in the 10(-1) mbar pressure range, combining in situ analysis of the catalyst surface by synchrotron-based photoelectron core level spectroscopy with simultaneous monitoring of the products released in the gas phase by mass spectroscopy. Metallic Ru with adsorbed oxygen and transient 'surface oxide', RuO(x), with varying x have been identified as the catalytically active states under specific reaction conditions, favouring partial or full oxidation pathways. It has been shown that the composition of catalytically active steady states, exhibiting different activity and selectivity, evolves under the reaction conditions, independent of the crystallographic orientation and the initial pre-catalyst chemical state, metallic Ru or RuO(2). |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/b700986k |