Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants

The ascorbate-glutathione pathway plays a major role in the detoxification of reactive oxygen species (ROS) in vascular plants. One of the key enzymes in this pathway is monodehydroascorbate reductase (MDHAR), a FAD enzyme that catalyses the reduction of the monodehydroascorbate radical. To elucidat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2006, Vol.60 (2), p.259-275
Hauptverfasser: Lunde, C, Baumann, U, Shirley, N.J, Drew, D.P, Fincher, G.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 2
container_start_page 259
container_title Plant molecular biology
container_volume 60
creator Lunde, C
Baumann, U
Shirley, N.J
Drew, D.P
Fincher, G.B
description The ascorbate-glutathione pathway plays a major role in the detoxification of reactive oxygen species (ROS) in vascular plants. One of the key enzymes in this pathway is monodehydroascorbate reductase (MDHAR), a FAD enzyme that catalyses the reduction of the monodehydroascorbate radical. To elucidate the evolution and functional role of MDHAR we identified and characterised MDHARs from the moss Physcomitrella patens. Expressed sequence tag (EST) databases containing approximately 100.000 ESTs from Physcomitrella were searched and three isoforms of monodehydroascorbate reductase (PpMDHAR1, PpMDHAR2 and PpMDHAR3) were identified. In vascular plants MDHAR is found in the cytosol, chloroplast, mitochondria and peroxisome. Surprisingly, all three PpMDHARs resembled the cytosolic isoforms from vascular plants lacking the NH(2)-terminal or COOH-terminal extension found in organelle targeted MDHARs. The number and position of introns was also conserved between PpMDHARs and cytosolic MDHARs from vascular plants. Phylogenetic analysis revealed that cytosolic MDHARs are monophyletic in origin and the ancestral gene evolved before the divergence of bryophytes more than 400 million years ago. Transcript analyses showed that expression of PpMdhar1 and PpMdhar3 was increased up to 5-fold under salt stress, osmotic stress or upon exposure to abscisic acid. In contrast, PpMdhar transcription levels were unchanged upon chilling, UV-B exposure or oxidative stress. The conservation of cytosolic MDHAR in the land-plant lineage and the transcriptional upregulation under water deficiency suggest that the evolution of cytosolic MDHAR played an essential role in stress protection for land plants when they inhabited the dry terrestrial environment.
doi_str_mv 10.1007/s11103-005-3881-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70679039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70679039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-4025248c71b1569e773a7f0f9a515a2db44287ade17216167367772afda7a6223</originalsourceid><addsrcrecordid>eNqFkl2r1DAQhosonvXoD_BGA4LoRTWTNE3r3XLc8wFnUc7HdZhtU7eHtqmZVOxv88-ZuguCN14FhmeeITNvkrwE_gE41x8JALhMOVepLApIi0fJCpSWqeKieJysOOQ6zTIQJ8kzogfOY5fMnyYnkGeiFLlcJb8u7GDZbfBTFSZvGQ412_wcvSVq3cC-YgjWD2w9YDdTS8w17G7vrWVbN7ja7ufaO6TK-R0Gy25sHT1Ilr3b1nv079miJ9ZG036OWN8Gb7sO2RjxgT6xq37s2gpDHEascZ6FvWWbH66bltIybilsP1-ub9g59m03_5F1OAR6njxpsCP74vieJvfnm7uzy_T6y8XV2fo6rTKhQppxoURWVBp2oPLSai1RN7wpUYFCUe-yTBQaawtaQB5XJnOttcCmRo25EPI0eXvwjt59nywF07dULd8YrJvIaJ7rksvyvyCUQiuQOoJv_gEf3OTjjskIXoDmquQqUnCgKu-IvG3M6Nse_WyAmyUA5hAAEwNglgCYIva8OpqnXW_rvx3Hi0fg9QFo0Bn85lsy97eCg4zhWJhC_gbcZbWJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081705905</pqid></control><display><type>article</type><title>Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lunde, C ; Baumann, U ; Shirley, N.J ; Drew, D.P ; Fincher, G.B</creator><creatorcontrib>Lunde, C ; Baumann, U ; Shirley, N.J ; Drew, D.P ; Fincher, G.B</creatorcontrib><description>The ascorbate-glutathione pathway plays a major role in the detoxification of reactive oxygen species (ROS) in vascular plants. One of the key enzymes in this pathway is monodehydroascorbate reductase (MDHAR), a FAD enzyme that catalyses the reduction of the monodehydroascorbate radical. To elucidate the evolution and functional role of MDHAR we identified and characterised MDHARs from the moss Physcomitrella patens. Expressed sequence tag (EST) databases containing approximately 100.000 ESTs from Physcomitrella were searched and three isoforms of monodehydroascorbate reductase (PpMDHAR1, PpMDHAR2 and PpMDHAR3) were identified. In vascular plants MDHAR is found in the cytosol, chloroplast, mitochondria and peroxisome. Surprisingly, all three PpMDHARs resembled the cytosolic isoforms from vascular plants lacking the NH(2)-terminal or COOH-terminal extension found in organelle targeted MDHARs. The number and position of introns was also conserved between PpMDHARs and cytosolic MDHARs from vascular plants. Phylogenetic analysis revealed that cytosolic MDHARs are monophyletic in origin and the ancestral gene evolved before the divergence of bryophytes more than 400 million years ago. Transcript analyses showed that expression of PpMdhar1 and PpMdhar3 was increased up to 5-fold under salt stress, osmotic stress or upon exposure to abscisic acid. In contrast, PpMdhar transcription levels were unchanged upon chilling, UV-B exposure or oxidative stress. The conservation of cytosolic MDHAR in the land-plant lineage and the transcriptional upregulation under water deficiency suggest that the evolution of cytosolic MDHAR played an essential role in stress protection for land plants when they inhabited the dry terrestrial environment.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-005-3881-8</identifier><identifier>PMID: 16429263</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>abiotic stress ; Abscisic acid ; Amino Acid Sequence ; amino acid sequences ; Aquatic plants ; Ascorbic acid ; Base Sequence ; Bryopsida - enzymology ; Bryopsida - genetics ; Chloroplasts ; Cytosol ; Detoxification ; DNA, Plant ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Expressed sequence tags ; Flavin-adenine dinucleotide ; Flowers &amp; plants ; gene expression ; gene expression regulation ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; genes ; Glutathione ; Introns ; Isoforms ; messenger RNA ; Mitochondria ; Molecular Sequence Data ; monodehydroascorbate reductase ; mosses and liverworts ; NADH or NADPH oxidoreductases ; NADH, NADPH Oxidoreductases - chemistry ; NADH, NADPH Oxidoreductases - genetics ; nucleotide sequences ; Osmotic stress ; Oxidative stress ; peroxisomes ; Phylogeny ; Physcomitrella patens ; Plant protection ; Plants ; Promoter Regions, Genetic ; Reactive oxygen species ; Reductase ; salt stress ; Sequence Homology, Amino Acid ; Sequence Homology, Nucleic Acid ; Terrestrial environments ; Transcription ; Ultraviolet radiation</subject><ispartof>Plant molecular biology, 2006, Vol.60 (2), p.259-275</ispartof><rights>Springer 2006.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-4025248c71b1569e773a7f0f9a515a2db44287ade17216167367772afda7a6223</citedby><cites>FETCH-LOGICAL-c425t-4025248c71b1569e773a7f0f9a515a2db44287ade17216167367772afda7a6223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16429263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lunde, C</creatorcontrib><creatorcontrib>Baumann, U</creatorcontrib><creatorcontrib>Shirley, N.J</creatorcontrib><creatorcontrib>Drew, D.P</creatorcontrib><creatorcontrib>Fincher, G.B</creatorcontrib><title>Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><description>The ascorbate-glutathione pathway plays a major role in the detoxification of reactive oxygen species (ROS) in vascular plants. One of the key enzymes in this pathway is monodehydroascorbate reductase (MDHAR), a FAD enzyme that catalyses the reduction of the monodehydroascorbate radical. To elucidate the evolution and functional role of MDHAR we identified and characterised MDHARs from the moss Physcomitrella patens. Expressed sequence tag (EST) databases containing approximately 100.000 ESTs from Physcomitrella were searched and three isoforms of monodehydroascorbate reductase (PpMDHAR1, PpMDHAR2 and PpMDHAR3) were identified. In vascular plants MDHAR is found in the cytosol, chloroplast, mitochondria and peroxisome. Surprisingly, all three PpMDHARs resembled the cytosolic isoforms from vascular plants lacking the NH(2)-terminal or COOH-terminal extension found in organelle targeted MDHARs. The number and position of introns was also conserved between PpMDHARs and cytosolic MDHARs from vascular plants. Phylogenetic analysis revealed that cytosolic MDHARs are monophyletic in origin and the ancestral gene evolved before the divergence of bryophytes more than 400 million years ago. Transcript analyses showed that expression of PpMdhar1 and PpMdhar3 was increased up to 5-fold under salt stress, osmotic stress or upon exposure to abscisic acid. In contrast, PpMdhar transcription levels were unchanged upon chilling, UV-B exposure or oxidative stress. The conservation of cytosolic MDHAR in the land-plant lineage and the transcriptional upregulation under water deficiency suggest that the evolution of cytosolic MDHAR played an essential role in stress protection for land plants when they inhabited the dry terrestrial environment.</description><subject>abiotic stress</subject><subject>Abscisic acid</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Aquatic plants</subject><subject>Ascorbic acid</subject><subject>Base Sequence</subject><subject>Bryopsida - enzymology</subject><subject>Bryopsida - genetics</subject><subject>Chloroplasts</subject><subject>Cytosol</subject><subject>Detoxification</subject><subject>DNA, Plant</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Expressed sequence tags</subject><subject>Flavin-adenine dinucleotide</subject><subject>Flowers &amp; plants</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Glutathione</subject><subject>Introns</subject><subject>Isoforms</subject><subject>messenger RNA</subject><subject>Mitochondria</subject><subject>Molecular Sequence Data</subject><subject>monodehydroascorbate reductase</subject><subject>mosses and liverworts</subject><subject>NADH or NADPH oxidoreductases</subject><subject>NADH, NADPH Oxidoreductases - chemistry</subject><subject>NADH, NADPH Oxidoreductases - genetics</subject><subject>nucleotide sequences</subject><subject>Osmotic stress</subject><subject>Oxidative stress</subject><subject>peroxisomes</subject><subject>Phylogeny</subject><subject>Physcomitrella patens</subject><subject>Plant protection</subject><subject>Plants</subject><subject>Promoter Regions, Genetic</subject><subject>Reactive oxygen species</subject><subject>Reductase</subject><subject>salt stress</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Terrestrial environments</subject><subject>Transcription</subject><subject>Ultraviolet radiation</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkl2r1DAQhosonvXoD_BGA4LoRTWTNE3r3XLc8wFnUc7HdZhtU7eHtqmZVOxv88-ZuguCN14FhmeeITNvkrwE_gE41x8JALhMOVepLApIi0fJCpSWqeKieJysOOQ6zTIQJ8kzogfOY5fMnyYnkGeiFLlcJb8u7GDZbfBTFSZvGQ412_wcvSVq3cC-YgjWD2w9YDdTS8w17G7vrWVbN7ja7ufaO6TK-R0Gy25sHT1Ilr3b1nv079miJ9ZG036OWN8Gb7sO2RjxgT6xq37s2gpDHEascZ6FvWWbH66bltIybilsP1-ub9g59m03_5F1OAR6njxpsCP74vieJvfnm7uzy_T6y8XV2fo6rTKhQppxoURWVBp2oPLSai1RN7wpUYFCUe-yTBQaawtaQB5XJnOttcCmRo25EPI0eXvwjt59nywF07dULd8YrJvIaJ7rksvyvyCUQiuQOoJv_gEf3OTjjskIXoDmquQqUnCgKu-IvG3M6Nse_WyAmyUA5hAAEwNglgCYIva8OpqnXW_rvx3Hi0fg9QFo0Bn85lsy97eCg4zhWJhC_gbcZbWJ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lunde, C</creator><creator>Baumann, U</creator><creator>Shirley, N.J</creator><creator>Drew, D.P</creator><creator>Fincher, G.B</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants</title><author>Lunde, C ; Baumann, U ; Shirley, N.J ; Drew, D.P ; Fincher, G.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-4025248c71b1569e773a7f0f9a515a2db44287ade17216167367772afda7a6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>abiotic stress</topic><topic>Abscisic acid</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Aquatic plants</topic><topic>Ascorbic acid</topic><topic>Base Sequence</topic><topic>Bryopsida - enzymology</topic><topic>Bryopsida - genetics</topic><topic>Chloroplasts</topic><topic>Cytosol</topic><topic>Detoxification</topic><topic>DNA, Plant</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Expressed sequence tags</topic><topic>Flavin-adenine dinucleotide</topic><topic>Flowers &amp; plants</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Glutathione</topic><topic>Introns</topic><topic>Isoforms</topic><topic>messenger RNA</topic><topic>Mitochondria</topic><topic>Molecular Sequence Data</topic><topic>monodehydroascorbate reductase</topic><topic>mosses and liverworts</topic><topic>NADH or NADPH oxidoreductases</topic><topic>NADH, NADPH Oxidoreductases - chemistry</topic><topic>NADH, NADPH Oxidoreductases - genetics</topic><topic>nucleotide sequences</topic><topic>Osmotic stress</topic><topic>Oxidative stress</topic><topic>peroxisomes</topic><topic>Phylogeny</topic><topic>Physcomitrella patens</topic><topic>Plant protection</topic><topic>Plants</topic><topic>Promoter Regions, Genetic</topic><topic>Reactive oxygen species</topic><topic>Reductase</topic><topic>salt stress</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Terrestrial environments</topic><topic>Transcription</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lunde, C</creatorcontrib><creatorcontrib>Baumann, U</creatorcontrib><creatorcontrib>Shirley, N.J</creatorcontrib><creatorcontrib>Drew, D.P</creatorcontrib><creatorcontrib>Fincher, G.B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lunde, C</au><au>Baumann, U</au><au>Shirley, N.J</au><au>Drew, D.P</au><au>Fincher, G.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants</atitle><jtitle>Plant molecular biology</jtitle><addtitle>Plant Mol Biol</addtitle><date>2006</date><risdate>2006</risdate><volume>60</volume><issue>2</issue><spage>259</spage><epage>275</epage><pages>259-275</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>The ascorbate-glutathione pathway plays a major role in the detoxification of reactive oxygen species (ROS) in vascular plants. One of the key enzymes in this pathway is monodehydroascorbate reductase (MDHAR), a FAD enzyme that catalyses the reduction of the monodehydroascorbate radical. To elucidate the evolution and functional role of MDHAR we identified and characterised MDHARs from the moss Physcomitrella patens. Expressed sequence tag (EST) databases containing approximately 100.000 ESTs from Physcomitrella were searched and three isoforms of monodehydroascorbate reductase (PpMDHAR1, PpMDHAR2 and PpMDHAR3) were identified. In vascular plants MDHAR is found in the cytosol, chloroplast, mitochondria and peroxisome. Surprisingly, all three PpMDHARs resembled the cytosolic isoforms from vascular plants lacking the NH(2)-terminal or COOH-terminal extension found in organelle targeted MDHARs. The number and position of introns was also conserved between PpMDHARs and cytosolic MDHARs from vascular plants. Phylogenetic analysis revealed that cytosolic MDHARs are monophyletic in origin and the ancestral gene evolved before the divergence of bryophytes more than 400 million years ago. Transcript analyses showed that expression of PpMdhar1 and PpMdhar3 was increased up to 5-fold under salt stress, osmotic stress or upon exposure to abscisic acid. In contrast, PpMdhar transcription levels were unchanged upon chilling, UV-B exposure or oxidative stress. The conservation of cytosolic MDHAR in the land-plant lineage and the transcriptional upregulation under water deficiency suggest that the evolution of cytosolic MDHAR played an essential role in stress protection for land plants when they inhabited the dry terrestrial environment.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>16429263</pmid><doi>10.1007/s11103-005-3881-8</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2006, Vol.60 (2), p.259-275
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_miscellaneous_70679039
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects abiotic stress
Abscisic acid
Amino Acid Sequence
amino acid sequences
Aquatic plants
Ascorbic acid
Base Sequence
Bryopsida - enzymology
Bryopsida - genetics
Chloroplasts
Cytosol
Detoxification
DNA, Plant
Evolution
Evolution, Molecular
Evolutionary genetics
Expressed sequence tags
Flavin-adenine dinucleotide
Flowers & plants
gene expression
gene expression regulation
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Plant
genes
Glutathione
Introns
Isoforms
messenger RNA
Mitochondria
Molecular Sequence Data
monodehydroascorbate reductase
mosses and liverworts
NADH or NADPH oxidoreductases
NADH, NADPH Oxidoreductases - chemistry
NADH, NADPH Oxidoreductases - genetics
nucleotide sequences
Osmotic stress
Oxidative stress
peroxisomes
Phylogeny
Physcomitrella patens
Plant protection
Plants
Promoter Regions, Genetic
Reactive oxygen species
Reductase
salt stress
Sequence Homology, Amino Acid
Sequence Homology, Nucleic Acid
Terrestrial environments
Transcription
Ultraviolet radiation
title Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Structure%20and%20Expression%20Pattern%20Analysis%20of%20Three%20Monodehydroascorbate%20Reductase%20(Mdhar)%20Genes%20in%20Physcomitrella%20patens:%20Implications%20for%20the%20Evolution%20of%20the%20MDHAR%20Family%20in%20Plants&rft.jtitle=Plant%20molecular%20biology&rft.au=Lunde,%20C&rft.date=2006&rft.volume=60&rft.issue=2&rft.spage=259&rft.epage=275&rft.pages=259-275&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-005-3881-8&rft_dat=%3Cproquest_cross%3E70679039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081705905&rft_id=info:pmid/16429263&rfr_iscdi=true