Relative Contributions of Leaf Area Ratio and Net Assimilation Rate to Change in Growth Rate Depend on Growth Temperature: Comparative Analysis of Subantarctic and Alpine Grasses

• The present study shows that the relative contributions of leaf area ratio (LAR) and net assimilation rate (NAR) to variation among species in relative growth rate (RGR) depend on growth temperature. • We grew three subantarctic and three alpine Poa species at daytime temperatures of 7, 12 and 17°...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2007-07, Vol.175 (2), p.290-300
Hauptverfasser: Danielle E. Medek, Ball, Marilyn C., Schortemeyer, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 2
container_start_page 290
container_title The New phytologist
container_volume 175
creator Danielle E. Medek
Ball, Marilyn C.
Schortemeyer, Marcus
description • The present study shows that the relative contributions of leaf area ratio (LAR) and net assimilation rate (NAR) to variation among species in relative growth rate (RGR) depend on growth temperature. • We grew three subantarctic and three alpine Poa species at daytime temperatures of 7, 12 and 17°C, and analysed interspecific and temperature-related variation in RGRs by growth analysis. • Variation in NAR accounted for most of the interspecific differences in RGR at low growth temperature, whereas variation in both NAR and LAR contributed strongly to interspecific differences in RGR at high growth temperature. For most species, the increase in RGR from 7 to 12°C was attributable to an increase in LAR, whereas the increase in RGR from 12 to 17°C was attributable to an increase in NAR. There were no differences between native subantarctic and alpine species in the plasticity of growth responses to temperature. However, Poa annua, a species introduced to the subantarctic, showed much greater growth plasticity than other species. • There was little difference among species in tolerance of high-temperature extremes.
doi_str_mv 10.1111/j.1469-8137.2007.02097.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70673115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4641047</jstor_id><sourcerecordid>4641047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5357-f0a87dac473f34f7c73fdf79575145fc67f3451219e746d8d35f04a8151f5e993</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EotvCGyDkE7cEO47jBIlDtNAWaVVQKRI3y5uMqVdJHGyHdl-LJ8TZrJYj-DLWzP_NL82PEKYkpfG93aU0L6qkpEykGSEiJRmpRPr4BK1Og6doRUhWJkVefD9D597vCCEVL7Ln6IwKXgomxAr9voVOBfML8NoOwZntFIwdPLYab0BpXDtQ-DYqLFZDi28g4Np705uZssM8AhwsXt-r4QdgM-ArZx_C_TL4ACNEyp66d9CP4FSYHLyLjv2o3OJeD6rbe3Mw_jpt1RCUa4JpDq51N5oB4g7lPfgX6JlWnYeXx3qBvl1-vFtfJ5vPV5_W9SZpOOMi0USVolVNLphmuRZNrK0WFRec5lw3hYhtTjNagciLtmwZ1yRXJeVUc6gqdoHeLHtHZ39O4IPsjW-g69QAdvJSkEIwSvk_hRnhLGOcRWG5CBtnvXeg5ehMr9xeUiLnYOVOzvnJOT85BysPwcrHiL4-ekzbHtq_4DHJKHi_CB5MB_v_XixvvlzPv8i_WvidD9ad-LzIKYkn_AO-Irzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20532353</pqid></control><display><type>article</type><title>Relative Contributions of Leaf Area Ratio and Net Assimilation Rate to Change in Growth Rate Depend on Growth Temperature: Comparative Analysis of Subantarctic and Alpine Grasses</title><source>Access via Wiley Online Library</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Danielle E. Medek ; Ball, Marilyn C. ; Schortemeyer, Marcus</creator><creatorcontrib>Danielle E. Medek ; Ball, Marilyn C. ; Schortemeyer, Marcus</creatorcontrib><description>• The present study shows that the relative contributions of leaf area ratio (LAR) and net assimilation rate (NAR) to variation among species in relative growth rate (RGR) depend on growth temperature. • We grew three subantarctic and three alpine Poa species at daytime temperatures of 7, 12 and 17°C, and analysed interspecific and temperature-related variation in RGRs by growth analysis. • Variation in NAR accounted for most of the interspecific differences in RGR at low growth temperature, whereas variation in both NAR and LAR contributed strongly to interspecific differences in RGR at high growth temperature. For most species, the increase in RGR from 7 to 12°C was attributable to an increase in LAR, whereas the increase in RGR from 12 to 17°C was attributable to an increase in NAR. There were no differences between native subantarctic and alpine species in the plasticity of growth responses to temperature. However, Poa annua, a species introduced to the subantarctic, showed much greater growth plasticity than other species. • There was little difference among species in tolerance of high-temperature extremes.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2007.02097.x</identifier><identifier>PMID: 17587377</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science</publisher><subject>Adaptation, Physiological ; alpine ; Climate change ; Ecosystem ; Grasses ; growth analysis ; Heat tolerance ; High temperature ; Hot Temperature ; Leaf area ; Low temperature ; Plant growth ; Plant Leaves - anatomy &amp; histology ; Plant Leaves - growth &amp; development ; Plants ; Poa ; Poa annua ; Poaceae - anatomy &amp; histology ; Poaceae - physiology ; Species ; Species Specificity ; subantarctic ; temperature ; Temperature ratio</subject><ispartof>The New phytologist, 2007-07, Vol.175 (2), p.290-300</ispartof><rights>Copyright 2007 New Phytologist</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5357-f0a87dac473f34f7c73fdf79575145fc67f3451219e746d8d35f04a8151f5e993</citedby><cites>FETCH-LOGICAL-c5357-f0a87dac473f34f7c73fdf79575145fc67f3451219e746d8d35f04a8151f5e993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4641047$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4641047$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17587377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danielle E. Medek</creatorcontrib><creatorcontrib>Ball, Marilyn C.</creatorcontrib><creatorcontrib>Schortemeyer, Marcus</creatorcontrib><title>Relative Contributions of Leaf Area Ratio and Net Assimilation Rate to Change in Growth Rate Depend on Growth Temperature: Comparative Analysis of Subantarctic and Alpine Grasses</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• The present study shows that the relative contributions of leaf area ratio (LAR) and net assimilation rate (NAR) to variation among species in relative growth rate (RGR) depend on growth temperature. • We grew three subantarctic and three alpine Poa species at daytime temperatures of 7, 12 and 17°C, and analysed interspecific and temperature-related variation in RGRs by growth analysis. • Variation in NAR accounted for most of the interspecific differences in RGR at low growth temperature, whereas variation in both NAR and LAR contributed strongly to interspecific differences in RGR at high growth temperature. For most species, the increase in RGR from 7 to 12°C was attributable to an increase in LAR, whereas the increase in RGR from 12 to 17°C was attributable to an increase in NAR. There were no differences between native subantarctic and alpine species in the plasticity of growth responses to temperature. However, Poa annua, a species introduced to the subantarctic, showed much greater growth plasticity than other species. • There was little difference among species in tolerance of high-temperature extremes.</description><subject>Adaptation, Physiological</subject><subject>alpine</subject><subject>Climate change</subject><subject>Ecosystem</subject><subject>Grasses</subject><subject>growth analysis</subject><subject>Heat tolerance</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Leaf area</subject><subject>Low temperature</subject><subject>Plant growth</subject><subject>Plant Leaves - anatomy &amp; histology</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plants</subject><subject>Poa</subject><subject>Poa annua</subject><subject>Poaceae - anatomy &amp; histology</subject><subject>Poaceae - physiology</subject><subject>Species</subject><subject>Species Specificity</subject><subject>subantarctic</subject><subject>temperature</subject><subject>Temperature ratio</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EotvCGyDkE7cEO47jBIlDtNAWaVVQKRI3y5uMqVdJHGyHdl-LJ8TZrJYj-DLWzP_NL82PEKYkpfG93aU0L6qkpEykGSEiJRmpRPr4BK1Og6doRUhWJkVefD9D597vCCEVL7Ln6IwKXgomxAr9voVOBfML8NoOwZntFIwdPLYab0BpXDtQ-DYqLFZDi28g4Np705uZssM8AhwsXt-r4QdgM-ArZx_C_TL4ACNEyp66d9CP4FSYHLyLjv2o3OJeD6rbe3Mw_jpt1RCUa4JpDq51N5oB4g7lPfgX6JlWnYeXx3qBvl1-vFtfJ5vPV5_W9SZpOOMi0USVolVNLphmuRZNrK0WFRec5lw3hYhtTjNagciLtmwZ1yRXJeVUc6gqdoHeLHtHZ39O4IPsjW-g69QAdvJSkEIwSvk_hRnhLGOcRWG5CBtnvXeg5ehMr9xeUiLnYOVOzvnJOT85BysPwcrHiL4-ekzbHtq_4DHJKHi_CB5MB_v_XixvvlzPv8i_WvidD9ad-LzIKYkn_AO-Irzt</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Danielle E. Medek</creator><creator>Ball, Marilyn C.</creator><creator>Schortemeyer, Marcus</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>200707</creationdate><title>Relative Contributions of Leaf Area Ratio and Net Assimilation Rate to Change in Growth Rate Depend on Growth Temperature: Comparative Analysis of Subantarctic and Alpine Grasses</title><author>Danielle E. Medek ; Ball, Marilyn C. ; Schortemeyer, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5357-f0a87dac473f34f7c73fdf79575145fc67f3451219e746d8d35f04a8151f5e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptation, Physiological</topic><topic>alpine</topic><topic>Climate change</topic><topic>Ecosystem</topic><topic>Grasses</topic><topic>growth analysis</topic><topic>Heat tolerance</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Leaf area</topic><topic>Low temperature</topic><topic>Plant growth</topic><topic>Plant Leaves - anatomy &amp; histology</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plants</topic><topic>Poa</topic><topic>Poa annua</topic><topic>Poaceae - anatomy &amp; histology</topic><topic>Poaceae - physiology</topic><topic>Species</topic><topic>Species Specificity</topic><topic>subantarctic</topic><topic>temperature</topic><topic>Temperature ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danielle E. Medek</creatorcontrib><creatorcontrib>Ball, Marilyn C.</creatorcontrib><creatorcontrib>Schortemeyer, Marcus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danielle E. Medek</au><au>Ball, Marilyn C.</au><au>Schortemeyer, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Contributions of Leaf Area Ratio and Net Assimilation Rate to Change in Growth Rate Depend on Growth Temperature: Comparative Analysis of Subantarctic and Alpine Grasses</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2007-07</date><risdate>2007</risdate><volume>175</volume><issue>2</issue><spage>290</spage><epage>300</epage><pages>290-300</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• The present study shows that the relative contributions of leaf area ratio (LAR) and net assimilation rate (NAR) to variation among species in relative growth rate (RGR) depend on growth temperature. • We grew three subantarctic and three alpine Poa species at daytime temperatures of 7, 12 and 17°C, and analysed interspecific and temperature-related variation in RGRs by growth analysis. • Variation in NAR accounted for most of the interspecific differences in RGR at low growth temperature, whereas variation in both NAR and LAR contributed strongly to interspecific differences in RGR at high growth temperature. For most species, the increase in RGR from 7 to 12°C was attributable to an increase in LAR, whereas the increase in RGR from 12 to 17°C was attributable to an increase in NAR. There were no differences between native subantarctic and alpine species in the plasticity of growth responses to temperature. However, Poa annua, a species introduced to the subantarctic, showed much greater growth plasticity than other species. • There was little difference among species in tolerance of high-temperature extremes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science</pub><pmid>17587377</pmid><doi>10.1111/j.1469-8137.2007.02097.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2007-07, Vol.175 (2), p.290-300
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_70673115
source Access via Wiley Online Library; Jstor Complete Legacy; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Adaptation, Physiological
alpine
Climate change
Ecosystem
Grasses
growth analysis
Heat tolerance
High temperature
Hot Temperature
Leaf area
Low temperature
Plant growth
Plant Leaves - anatomy & histology
Plant Leaves - growth & development
Plants
Poa
Poa annua
Poaceae - anatomy & histology
Poaceae - physiology
Species
Species Specificity
subantarctic
temperature
Temperature ratio
title Relative Contributions of Leaf Area Ratio and Net Assimilation Rate to Change in Growth Rate Depend on Growth Temperature: Comparative Analysis of Subantarctic and Alpine Grasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Contributions%20of%20Leaf%20Area%20Ratio%20and%20Net%20Assimilation%20Rate%20to%20Change%20in%20Growth%20Rate%20Depend%20on%20Growth%20Temperature:%20Comparative%20Analysis%20of%20Subantarctic%20and%20Alpine%20Grasses&rft.jtitle=The%20New%20phytologist&rft.au=Danielle%20E.%20Medek&rft.date=2007-07&rft.volume=175&rft.issue=2&rft.spage=290&rft.epage=300&rft.pages=290-300&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2007.02097.x&rft_dat=%3Cjstor_proqu%3E4641047%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20532353&rft_id=info:pmid/17587377&rft_jstor_id=4641047&rfr_iscdi=true