Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips
A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2007-07, Vol.79 (13), p.5097-5102 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5102 |
---|---|
container_issue | 13 |
container_start_page | 5097 |
container_title | Analytical chemistry (Washington) |
container_volume | 79 |
creator | Mair, Dieudonne A Rolandi, Marco Snauko, Marian Noroski, Richard Svec, Frantisek Fréchet, Jean M. J |
description | A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements performed by atomic force microscopy show that a reversible material softening occurs upon exposure to solvent vapor. Subsequent exposure of the bonded chip to UV light then strengthens the bond between mating parts and increases the burst pressure by 50% due to partial cross-linking and chain scission reactions as measured by size exclusion chromatography-multiangle light scattering (SEC-MALS). Performing all steps of this procedure at room temperature eliminates channel distortion observed during thermal bonding and affords channels with highly uniform cross-sectional dimensions. Our technique enables chips resistant to pressures as high as 34.6 MPa. |
doi_str_mv | 10.1021/ac070220w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70672145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70672145</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-46c43cf3b70fa5002ca0771c5948a495fa1dd93ecbe536b43625a562b01534103</originalsourceid><addsrcrecordid>eNpl0E1v00AQBuAVAtG0cOgfqCIkKnEwzOyH1z62Udoi0hJBUKVeVuP1ut3ij7Brq_DvcZSokeA0h3n0auZl7BjhIwLHT2RBA-fw9IJNUHFI0izjL9kEAETCNcABO4zxEQARMH3NDlArARlmEzb_1nVNsnLN2gXqh-Cm511b-vZ-WnVhuqwp9t5Or_z9Q7IMLsaNuPY2dFU9-HJczR78Or5hryqqo3u7m0fsx8V8NbtKFl8vP8_OFglJLftEplYKW4lCQ0UKgFsCrdGqXGYkc1URlmUunC2cEmkhRcoVqZQXgEpIBHHETre569D9GlzsTeOjdXVNreuGaDSkmqNUI3z3D3zshtCOtxmOOsshE_mIPmzR-E6MwVVmHXxD4Y9BMJtizXOxoz3ZBQ5F48q93DU5gvc7QNFSXQVqrY97l-UcUPPRJVvnY-9-P-8p_DSpFlqZ1fK7wdvrm9nd5Rdzs88lG_dP_H_gX7P5mNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217890839</pqid></control><display><type>article</type><title>Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mair, Dieudonne A ; Rolandi, Marco ; Snauko, Marian ; Noroski, Richard ; Svec, Frantisek ; Fréchet, Jean M. J</creator><creatorcontrib>Mair, Dieudonne A ; Rolandi, Marco ; Snauko, Marian ; Noroski, Richard ; Svec, Frantisek ; Fréchet, Jean M. J</creatorcontrib><description>A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements performed by atomic force microscopy show that a reversible material softening occurs upon exposure to solvent vapor. Subsequent exposure of the bonded chip to UV light then strengthens the bond between mating parts and increases the burst pressure by 50% due to partial cross-linking and chain scission reactions as measured by size exclusion chromatography-multiangle light scattering (SEC-MALS). Performing all steps of this procedure at room temperature eliminates channel distortion observed during thermal bonding and affords channels with highly uniform cross-sectional dimensions. Our technique enables chips resistant to pressures as high as 34.6 MPa.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac070220w</identifier><identifier>PMID: 17530818</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Biomedical research ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Cross-Linking Reagents - chemistry ; Exact sciences and technology ; Gases ; Materials Testing ; Microfluidics - instrumentation ; Microfluidics - methods ; Microscopy ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; Other chromatographic methods ; Plastics - chemistry ; Pressure ; Solvents - chemistry ; Surface Properties ; Temperature ; Thermal cycling ; Time Factors ; Ultraviolet Rays</subject><ispartof>Analytical chemistry (Washington), 2007-07, Vol.79 (13), p.5097-5102</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 1, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-46c43cf3b70fa5002ca0771c5948a495fa1dd93ecbe536b43625a562b01534103</citedby><cites>FETCH-LOGICAL-a474t-46c43cf3b70fa5002ca0771c5948a495fa1dd93ecbe536b43625a562b01534103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac070220w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac070220w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18920172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17530818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mair, Dieudonne A</creatorcontrib><creatorcontrib>Rolandi, Marco</creatorcontrib><creatorcontrib>Snauko, Marian</creatorcontrib><creatorcontrib>Noroski, Richard</creatorcontrib><creatorcontrib>Svec, Frantisek</creatorcontrib><creatorcontrib>Fréchet, Jean M. J</creatorcontrib><title>Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements performed by atomic force microscopy show that a reversible material softening occurs upon exposure to solvent vapor. Subsequent exposure of the bonded chip to UV light then strengthens the bond between mating parts and increases the burst pressure by 50% due to partial cross-linking and chain scission reactions as measured by size exclusion chromatography-multiangle light scattering (SEC-MALS). Performing all steps of this procedure at room temperature eliminates channel distortion observed during thermal bonding and affords channels with highly uniform cross-sectional dimensions. Our technique enables chips resistant to pressures as high as 34.6 MPa.</description><subject>Analytical chemistry</subject><subject>Biomedical research</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Materials Testing</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>Other chromatographic methods</subject><subject>Plastics - chemistry</subject><subject>Pressure</subject><subject>Solvents - chemistry</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Thermal cycling</subject><subject>Time Factors</subject><subject>Ultraviolet Rays</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1v00AQBuAVAtG0cOgfqCIkKnEwzOyH1z62Udoi0hJBUKVeVuP1ut3ij7Brq_DvcZSokeA0h3n0auZl7BjhIwLHT2RBA-fw9IJNUHFI0izjL9kEAETCNcABO4zxEQARMH3NDlArARlmEzb_1nVNsnLN2gXqh-Cm511b-vZ-WnVhuqwp9t5Or_z9Q7IMLsaNuPY2dFU9-HJczR78Or5hryqqo3u7m0fsx8V8NbtKFl8vP8_OFglJLftEplYKW4lCQ0UKgFsCrdGqXGYkc1URlmUunC2cEmkhRcoVqZQXgEpIBHHETre569D9GlzsTeOjdXVNreuGaDSkmqNUI3z3D3zshtCOtxmOOsshE_mIPmzR-E6MwVVmHXxD4Y9BMJtizXOxoz3ZBQ5F48q93DU5gvc7QNFSXQVqrY97l-UcUPPRJVvnY-9-P-8p_DSpFlqZ1fK7wdvrm9nd5Rdzs88lG_dP_H_gX7P5mNs</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Mair, Dieudonne A</creator><creator>Rolandi, Marco</creator><creator>Snauko, Marian</creator><creator>Noroski, Richard</creator><creator>Svec, Frantisek</creator><creator>Fréchet, Jean M. J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips</title><author>Mair, Dieudonne A ; Rolandi, Marco ; Snauko, Marian ; Noroski, Richard ; Svec, Frantisek ; Fréchet, Jean M. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-46c43cf3b70fa5002ca0771c5948a495fa1dd93ecbe536b43625a562b01534103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical chemistry</topic><topic>Biomedical research</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Materials Testing</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>Other chromatographic methods</topic><topic>Plastics - chemistry</topic><topic>Pressure</topic><topic>Solvents - chemistry</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Thermal cycling</topic><topic>Time Factors</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mair, Dieudonne A</creatorcontrib><creatorcontrib>Rolandi, Marco</creatorcontrib><creatorcontrib>Snauko, Marian</creatorcontrib><creatorcontrib>Noroski, Richard</creatorcontrib><creatorcontrib>Svec, Frantisek</creatorcontrib><creatorcontrib>Fréchet, Jean M. J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mair, Dieudonne A</au><au>Rolandi, Marco</au><au>Snauko, Marian</au><au>Noroski, Richard</au><au>Svec, Frantisek</au><au>Fréchet, Jean M. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>79</volume><issue>13</issue><spage>5097</spage><epage>5102</epage><pages>5097-5102</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements performed by atomic force microscopy show that a reversible material softening occurs upon exposure to solvent vapor. Subsequent exposure of the bonded chip to UV light then strengthens the bond between mating parts and increases the burst pressure by 50% due to partial cross-linking and chain scission reactions as measured by size exclusion chromatography-multiangle light scattering (SEC-MALS). Performing all steps of this procedure at room temperature eliminates channel distortion observed during thermal bonding and affords channels with highly uniform cross-sectional dimensions. Our technique enables chips resistant to pressures as high as 34.6 MPa.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17530818</pmid><doi>10.1021/ac070220w</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2007-07, Vol.79 (13), p.5097-5102 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_70672145 |
source | MEDLINE; ACS Publications |
subjects | Analytical chemistry Biomedical research Chemistry Chromatographic methods and physical methods associated with chromatography Cross-Linking Reagents - chemistry Exact sciences and technology Gases Materials Testing Microfluidics - instrumentation Microfluidics - methods Microscopy Microscopy, Atomic Force Microscopy, Electron, Scanning Other chromatographic methods Plastics - chemistry Pressure Solvents - chemistry Surface Properties Temperature Thermal cycling Time Factors Ultraviolet Rays |
title | Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-Temperature%20Bonding%20for%20Plastic%20High-Pressure%20Microfluidic%20Chips&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mair,%20Dieudonne%20A&rft.date=2007-07-01&rft.volume=79&rft.issue=13&rft.spage=5097&rft.epage=5102&rft.pages=5097-5102&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac070220w&rft_dat=%3Cproquest_cross%3E70672145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217890839&rft_id=info:pmid/17530818&rfr_iscdi=true |