Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips

A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-07, Vol.79 (13), p.5097-5102
Hauptverfasser: Mair, Dieudonne A, Rolandi, Marco, Snauko, Marian, Noroski, Richard, Svec, Frantisek, Fréchet, Jean M. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5102
container_issue 13
container_start_page 5097
container_title Analytical chemistry (Washington)
container_volume 79
creator Mair, Dieudonne A
Rolandi, Marco
Snauko, Marian
Noroski, Richard
Svec, Frantisek
Fréchet, Jean M. J
description A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements performed by atomic force microscopy show that a reversible material softening occurs upon exposure to solvent vapor. Subsequent exposure of the bonded chip to UV light then strengthens the bond between mating parts and increases the burst pressure by 50% due to partial cross-linking and chain scission reactions as measured by size exclusion chromatography-multiangle light scattering (SEC-MALS). Performing all steps of this procedure at room temperature eliminates channel distortion observed during thermal bonding and affords channels with highly uniform cross-sectional dimensions. Our technique enables chips resistant to pressures as high as 34.6 MPa.
doi_str_mv 10.1021/ac070220w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70672145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70672145</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-46c43cf3b70fa5002ca0771c5948a495fa1dd93ecbe536b43625a562b01534103</originalsourceid><addsrcrecordid>eNpl0E1v00AQBuAVAtG0cOgfqCIkKnEwzOyH1z62Udoi0hJBUKVeVuP1ut3ij7Brq_DvcZSokeA0h3n0auZl7BjhIwLHT2RBA-fw9IJNUHFI0izjL9kEAETCNcABO4zxEQARMH3NDlArARlmEzb_1nVNsnLN2gXqh-Cm511b-vZ-WnVhuqwp9t5Or_z9Q7IMLsaNuPY2dFU9-HJczR78Or5hryqqo3u7m0fsx8V8NbtKFl8vP8_OFglJLftEplYKW4lCQ0UKgFsCrdGqXGYkc1URlmUunC2cEmkhRcoVqZQXgEpIBHHETre569D9GlzsTeOjdXVNreuGaDSkmqNUI3z3D3zshtCOtxmOOsshE_mIPmzR-E6MwVVmHXxD4Y9BMJtizXOxoz3ZBQ5F48q93DU5gvc7QNFSXQVqrY97l-UcUPPRJVvnY-9-P-8p_DSpFlqZ1fK7wdvrm9nd5Rdzs88lG_dP_H_gX7P5mNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217890839</pqid></control><display><type>article</type><title>Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mair, Dieudonne A ; Rolandi, Marco ; Snauko, Marian ; Noroski, Richard ; Svec, Frantisek ; Fréchet, Jean M. J</creator><creatorcontrib>Mair, Dieudonne A ; Rolandi, Marco ; Snauko, Marian ; Noroski, Richard ; Svec, Frantisek ; Fréchet, Jean M. J</creatorcontrib><description>A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements performed by atomic force microscopy show that a reversible material softening occurs upon exposure to solvent vapor. Subsequent exposure of the bonded chip to UV light then strengthens the bond between mating parts and increases the burst pressure by 50% due to partial cross-linking and chain scission reactions as measured by size exclusion chromatography-multiangle light scattering (SEC-MALS). Performing all steps of this procedure at room temperature eliminates channel distortion observed during thermal bonding and affords channels with highly uniform cross-sectional dimensions. Our technique enables chips resistant to pressures as high as 34.6 MPa.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac070220w</identifier><identifier>PMID: 17530818</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Biomedical research ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Cross-Linking Reagents - chemistry ; Exact sciences and technology ; Gases ; Materials Testing ; Microfluidics - instrumentation ; Microfluidics - methods ; Microscopy ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; Other chromatographic methods ; Plastics - chemistry ; Pressure ; Solvents - chemistry ; Surface Properties ; Temperature ; Thermal cycling ; Time Factors ; Ultraviolet Rays</subject><ispartof>Analytical chemistry (Washington), 2007-07, Vol.79 (13), p.5097-5102</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 1, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-46c43cf3b70fa5002ca0771c5948a495fa1dd93ecbe536b43625a562b01534103</citedby><cites>FETCH-LOGICAL-a474t-46c43cf3b70fa5002ca0771c5948a495fa1dd93ecbe536b43625a562b01534103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac070220w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac070220w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18920172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17530818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mair, Dieudonne A</creatorcontrib><creatorcontrib>Rolandi, Marco</creatorcontrib><creatorcontrib>Snauko, Marian</creatorcontrib><creatorcontrib>Noroski, Richard</creatorcontrib><creatorcontrib>Svec, Frantisek</creatorcontrib><creatorcontrib>Fréchet, Jean M. J</creatorcontrib><title>Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements performed by atomic force microscopy show that a reversible material softening occurs upon exposure to solvent vapor. Subsequent exposure of the bonded chip to UV light then strengthens the bond between mating parts and increases the burst pressure by 50% due to partial cross-linking and chain scission reactions as measured by size exclusion chromatography-multiangle light scattering (SEC-MALS). Performing all steps of this procedure at room temperature eliminates channel distortion observed during thermal bonding and affords channels with highly uniform cross-sectional dimensions. Our technique enables chips resistant to pressures as high as 34.6 MPa.</description><subject>Analytical chemistry</subject><subject>Biomedical research</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Materials Testing</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>Other chromatographic methods</subject><subject>Plastics - chemistry</subject><subject>Pressure</subject><subject>Solvents - chemistry</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Thermal cycling</subject><subject>Time Factors</subject><subject>Ultraviolet Rays</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1v00AQBuAVAtG0cOgfqCIkKnEwzOyH1z62Udoi0hJBUKVeVuP1ut3ij7Brq_DvcZSokeA0h3n0auZl7BjhIwLHT2RBA-fw9IJNUHFI0izjL9kEAETCNcABO4zxEQARMH3NDlArARlmEzb_1nVNsnLN2gXqh-Cm511b-vZ-WnVhuqwp9t5Or_z9Q7IMLsaNuPY2dFU9-HJczR78Or5hryqqo3u7m0fsx8V8NbtKFl8vP8_OFglJLftEplYKW4lCQ0UKgFsCrdGqXGYkc1URlmUunC2cEmkhRcoVqZQXgEpIBHHETre569D9GlzsTeOjdXVNreuGaDSkmqNUI3z3D3zshtCOtxmOOsshE_mIPmzR-E6MwVVmHXxD4Y9BMJtizXOxoz3ZBQ5F48q93DU5gvc7QNFSXQVqrY97l-UcUPPRJVvnY-9-P-8p_DSpFlqZ1fK7wdvrm9nd5Rdzs88lG_dP_H_gX7P5mNs</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Mair, Dieudonne A</creator><creator>Rolandi, Marco</creator><creator>Snauko, Marian</creator><creator>Noroski, Richard</creator><creator>Svec, Frantisek</creator><creator>Fréchet, Jean M. J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips</title><author>Mair, Dieudonne A ; Rolandi, Marco ; Snauko, Marian ; Noroski, Richard ; Svec, Frantisek ; Fréchet, Jean M. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-46c43cf3b70fa5002ca0771c5948a495fa1dd93ecbe536b43625a562b01534103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical chemistry</topic><topic>Biomedical research</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Materials Testing</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>Other chromatographic methods</topic><topic>Plastics - chemistry</topic><topic>Pressure</topic><topic>Solvents - chemistry</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Thermal cycling</topic><topic>Time Factors</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mair, Dieudonne A</creatorcontrib><creatorcontrib>Rolandi, Marco</creatorcontrib><creatorcontrib>Snauko, Marian</creatorcontrib><creatorcontrib>Noroski, Richard</creatorcontrib><creatorcontrib>Svec, Frantisek</creatorcontrib><creatorcontrib>Fréchet, Jean M. J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mair, Dieudonne A</au><au>Rolandi, Marco</au><au>Snauko, Marian</au><au>Noroski, Richard</au><au>Svec, Frantisek</au><au>Fréchet, Jean M. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>79</volume><issue>13</issue><spage>5097</spage><epage>5102</epage><pages>5097-5102</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A generic method for the rapid, reproducible, and robust bonding of microfluidic chips fabricated from plastics has been developed and optimized. One of the bonding surfaces is exposed to solvent vapor prior to bringing the mating parts into contact and applying a load. Nanoindentation measurements performed by atomic force microscopy show that a reversible material softening occurs upon exposure to solvent vapor. Subsequent exposure of the bonded chip to UV light then strengthens the bond between mating parts and increases the burst pressure by 50% due to partial cross-linking and chain scission reactions as measured by size exclusion chromatography-multiangle light scattering (SEC-MALS). Performing all steps of this procedure at room temperature eliminates channel distortion observed during thermal bonding and affords channels with highly uniform cross-sectional dimensions. Our technique enables chips resistant to pressures as high as 34.6 MPa.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17530818</pmid><doi>10.1021/ac070220w</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2007-07, Vol.79 (13), p.5097-5102
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70672145
source MEDLINE; ACS Publications
subjects Analytical chemistry
Biomedical research
Chemistry
Chromatographic methods and physical methods associated with chromatography
Cross-Linking Reagents - chemistry
Exact sciences and technology
Gases
Materials Testing
Microfluidics - instrumentation
Microfluidics - methods
Microscopy
Microscopy, Atomic Force
Microscopy, Electron, Scanning
Other chromatographic methods
Plastics - chemistry
Pressure
Solvents - chemistry
Surface Properties
Temperature
Thermal cycling
Time Factors
Ultraviolet Rays
title Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-Temperature%20Bonding%20for%20Plastic%20High-Pressure%20Microfluidic%20Chips&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mair,%20Dieudonne%20A&rft.date=2007-07-01&rft.volume=79&rft.issue=13&rft.spage=5097&rft.epage=5102&rft.pages=5097-5102&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac070220w&rft_dat=%3Cproquest_cross%3E70672145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217890839&rft_id=info:pmid/17530818&rfr_iscdi=true