Ocular Gene Transfer with Self-Complementary AAV Vectors

Self-complementary AAV (scAAV) vectors have been developed to circumvent rate-limiting second-strand synthesis in single-stranded AAV vector genomes and to facilitate robust transgene expression at a minimal dose. In this study, the authors investigated the effects of intraocular injections of type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2007-07, Vol.48 (7), p.3324-3328
Hauptverfasser: Yokoi, Katsutoshi, Kachi, Shu, Zhang, H. Steve, Gregory, Philip D, Spratt, S. Kaye, Samulski, R. Jude, Campochiaro, Peter A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3328
container_issue 7
container_start_page 3324
container_title Investigative ophthalmology & visual science
container_volume 48
creator Yokoi, Katsutoshi
Kachi, Shu
Zhang, H. Steve
Gregory, Philip D
Spratt, S. Kaye
Samulski, R. Jude
Campochiaro, Peter A
description Self-complementary AAV (scAAV) vectors have been developed to circumvent rate-limiting second-strand synthesis in single-stranded AAV vector genomes and to facilitate robust transgene expression at a minimal dose. In this study, the authors investigated the effects of intraocular injections of type 2 scAAV.GFP in mice. Dose-response experiments were performed to compare conventional single-strand AAV type 2 (ssAAV2) vectors with scAAV2 vectors encoding an identical expression cassette. Subretinal injection of 5 x 10(8) viral particles (vp) of scAAV.CMV-GFP resulted in green fluorescent protein (GFP) expression in almost all retinal pigment epithelial (RPE) cells within the area of the small detachment caused by the injection by 3 days and strong, diffuse expression by 7 days. Expression was strong in all retinal cell layers by days 14 and 28. In contrast, 3 days after subretinal injection of 5 x 10(8) vp of ssAAV.CMV-GFP, GFP expression was detectable in few RPE cells. Moreover, the ssAAV vector required 14 days for the attainment of expression levels comparable to those observed using scAAV at day 3. Expression in photoreceptors was not detectable until day 28. Dose-response experiments confirmed that onset of GFP expression was more rapid and robust after subretinal injection of scAAV.CMV-GFP than of ssAAV.CMV-GFP, resulting in pronounced expression in photoreceptors and other retinal neurons. Similar results were obtained for intravitreous injections. These data suggest that scAAV vectors may be advantageous for ocular gene therapy, particularly in retinal diseases that require rapid and robust transgene expression in photoreceptor cells.
doi_str_mv 10.1167/iovs.06-1306
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70670550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70670550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5a1737f641e15c380d4f2c85309921c8a4f15bb0deca1e5587b44cdf938360f3</originalsourceid><addsrcrecordid>eNpFkM1r20AQR5fQ0jhubz0XXZpTlM5oP3U0pnECBh9qcl3W69lYZWW5u1JF__vKxODTwPB4_HiMfUV4RFT6R9P9zY-gSuSgbtgMpaxKqQ3_wGaAQpUgQNyyu5x_A1SIFXxit6hljTXIGTMbP0SXihUdqdgmd8yBUjE2_aH4RTGUy649RWrp2Lv0r1gsXotX8n2X8mf2MbiY6cvlztn26ed2-VyuN6uX5WJdem5MX0qHmuugBBLK6QV7ESpvJIe6rtAbJwLK3Q725B2SlEbvhPD7UHPDFQQ-Z_fv2lPq_gyUe9s22VOM7kjdkK0GpUFKmMCHd9CnLudEwZ5S006jLYI9h7LnUBaUPYea8G8X77BraX-FL2Um4PsFcNm7GKY0vslXzphaqxquAw_N22FsEtncuhgnLdpxHIWx2nJeCf4ffpp8xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70670550</pqid></control><display><type>article</type><title>Ocular Gene Transfer with Self-Complementary AAV Vectors</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yokoi, Katsutoshi ; Kachi, Shu ; Zhang, H. Steve ; Gregory, Philip D ; Spratt, S. Kaye ; Samulski, R. Jude ; Campochiaro, Peter A</creator><creatorcontrib>Yokoi, Katsutoshi ; Kachi, Shu ; Zhang, H. Steve ; Gregory, Philip D ; Spratt, S. Kaye ; Samulski, R. Jude ; Campochiaro, Peter A</creatorcontrib><description>Self-complementary AAV (scAAV) vectors have been developed to circumvent rate-limiting second-strand synthesis in single-stranded AAV vector genomes and to facilitate robust transgene expression at a minimal dose. In this study, the authors investigated the effects of intraocular injections of type 2 scAAV.GFP in mice. Dose-response experiments were performed to compare conventional single-strand AAV type 2 (ssAAV2) vectors with scAAV2 vectors encoding an identical expression cassette. Subretinal injection of 5 x 10(8) viral particles (vp) of scAAV.CMV-GFP resulted in green fluorescent protein (GFP) expression in almost all retinal pigment epithelial (RPE) cells within the area of the small detachment caused by the injection by 3 days and strong, diffuse expression by 7 days. Expression was strong in all retinal cell layers by days 14 and 28. In contrast, 3 days after subretinal injection of 5 x 10(8) vp of ssAAV.CMV-GFP, GFP expression was detectable in few RPE cells. Moreover, the ssAAV vector required 14 days for the attainment of expression levels comparable to those observed using scAAV at day 3. Expression in photoreceptors was not detectable until day 28. Dose-response experiments confirmed that onset of GFP expression was more rapid and robust after subretinal injection of scAAV.CMV-GFP than of ssAAV.CMV-GFP, resulting in pronounced expression in photoreceptors and other retinal neurons. Similar results were obtained for intravitreous injections. These data suggest that scAAV vectors may be advantageous for ocular gene therapy, particularly in retinal diseases that require rapid and robust transgene expression in photoreceptor cells.</description><identifier>ISSN: 0146-0404</identifier><identifier>ISSN: 1552-5783</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.06-1306</identifier><identifier>PMID: 17591905</identifier><identifier>CODEN: IOVSDA</identifier><language>eng</language><publisher>Rockville, MD: ARVO</publisher><subject>Animals ; Biological and medical sciences ; Dependovirus - genetics ; Eye and associated structures. Visual pathways and centers. Vision ; Female ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - physiology ; Gene Transfer Techniques ; Genetic Therapy ; Genetic Vectors ; Green Fluorescent Proteins - genetics ; Mice ; Mice, Inbred BALB C ; Microscopy, Fluorescence ; Pigment Epithelium of Eye - metabolism ; Plasmids ; Transgenes ; Vertebrates: nervous system and sense organs</subject><ispartof>Investigative ophthalmology &amp; visual science, 2007-07, Vol.48 (7), p.3324-3328</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5a1737f641e15c380d4f2c85309921c8a4f15bb0deca1e5587b44cdf938360f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18897690$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17591905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yokoi, Katsutoshi</creatorcontrib><creatorcontrib>Kachi, Shu</creatorcontrib><creatorcontrib>Zhang, H. Steve</creatorcontrib><creatorcontrib>Gregory, Philip D</creatorcontrib><creatorcontrib>Spratt, S. Kaye</creatorcontrib><creatorcontrib>Samulski, R. Jude</creatorcontrib><creatorcontrib>Campochiaro, Peter A</creatorcontrib><title>Ocular Gene Transfer with Self-Complementary AAV Vectors</title><title>Investigative ophthalmology &amp; visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>Self-complementary AAV (scAAV) vectors have been developed to circumvent rate-limiting second-strand synthesis in single-stranded AAV vector genomes and to facilitate robust transgene expression at a minimal dose. In this study, the authors investigated the effects of intraocular injections of type 2 scAAV.GFP in mice. Dose-response experiments were performed to compare conventional single-strand AAV type 2 (ssAAV2) vectors with scAAV2 vectors encoding an identical expression cassette. Subretinal injection of 5 x 10(8) viral particles (vp) of scAAV.CMV-GFP resulted in green fluorescent protein (GFP) expression in almost all retinal pigment epithelial (RPE) cells within the area of the small detachment caused by the injection by 3 days and strong, diffuse expression by 7 days. Expression was strong in all retinal cell layers by days 14 and 28. In contrast, 3 days after subretinal injection of 5 x 10(8) vp of ssAAV.CMV-GFP, GFP expression was detectable in few RPE cells. Moreover, the ssAAV vector required 14 days for the attainment of expression levels comparable to those observed using scAAV at day 3. Expression in photoreceptors was not detectable until day 28. Dose-response experiments confirmed that onset of GFP expression was more rapid and robust after subretinal injection of scAAV.CMV-GFP than of ssAAV.CMV-GFP, resulting in pronounced expression in photoreceptors and other retinal neurons. Similar results were obtained for intravitreous injections. These data suggest that scAAV vectors may be advantageous for ocular gene therapy, particularly in retinal diseases that require rapid and robust transgene expression in photoreceptor cells.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Dependovirus - genetics</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - physiology</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microscopy, Fluorescence</subject><subject>Pigment Epithelium of Eye - metabolism</subject><subject>Plasmids</subject><subject>Transgenes</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0146-0404</issn><issn>1552-5783</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkM1r20AQR5fQ0jhubz0XXZpTlM5oP3U0pnECBh9qcl3W69lYZWW5u1JF__vKxODTwPB4_HiMfUV4RFT6R9P9zY-gSuSgbtgMpaxKqQ3_wGaAQpUgQNyyu5x_A1SIFXxit6hljTXIGTMbP0SXihUdqdgmd8yBUjE2_aH4RTGUy649RWrp2Lv0r1gsXotX8n2X8mf2MbiY6cvlztn26ed2-VyuN6uX5WJdem5MX0qHmuugBBLK6QV7ESpvJIe6rtAbJwLK3Q725B2SlEbvhPD7UHPDFQQ-Z_fv2lPq_gyUe9s22VOM7kjdkK0GpUFKmMCHd9CnLudEwZ5S006jLYI9h7LnUBaUPYea8G8X77BraX-FL2Um4PsFcNm7GKY0vslXzphaqxquAw_N22FsEtncuhgnLdpxHIWx2nJeCf4ffpp8xQ</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Yokoi, Katsutoshi</creator><creator>Kachi, Shu</creator><creator>Zhang, H. Steve</creator><creator>Gregory, Philip D</creator><creator>Spratt, S. Kaye</creator><creator>Samulski, R. Jude</creator><creator>Campochiaro, Peter A</creator><general>ARVO</general><general>Association for Research in Vision and Ophtalmology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Ocular Gene Transfer with Self-Complementary AAV Vectors</title><author>Yokoi, Katsutoshi ; Kachi, Shu ; Zhang, H. Steve ; Gregory, Philip D ; Spratt, S. Kaye ; Samulski, R. Jude ; Campochiaro, Peter A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5a1737f641e15c380d4f2c85309921c8a4f15bb0deca1e5587b44cdf938360f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Dependovirus - genetics</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - physiology</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microscopy, Fluorescence</topic><topic>Pigment Epithelium of Eye - metabolism</topic><topic>Plasmids</topic><topic>Transgenes</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokoi, Katsutoshi</creatorcontrib><creatorcontrib>Kachi, Shu</creatorcontrib><creatorcontrib>Zhang, H. Steve</creatorcontrib><creatorcontrib>Gregory, Philip D</creatorcontrib><creatorcontrib>Spratt, S. Kaye</creatorcontrib><creatorcontrib>Samulski, R. Jude</creatorcontrib><creatorcontrib>Campochiaro, Peter A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Investigative ophthalmology &amp; visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokoi, Katsutoshi</au><au>Kachi, Shu</au><au>Zhang, H. Steve</au><au>Gregory, Philip D</au><au>Spratt, S. Kaye</au><au>Samulski, R. Jude</au><au>Campochiaro, Peter A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocular Gene Transfer with Self-Complementary AAV Vectors</atitle><jtitle>Investigative ophthalmology &amp; visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>48</volume><issue>7</issue><spage>3324</spage><epage>3328</epage><pages>3324-3328</pages><issn>0146-0404</issn><issn>1552-5783</issn><eissn>1552-5783</eissn><coden>IOVSDA</coden><abstract>Self-complementary AAV (scAAV) vectors have been developed to circumvent rate-limiting second-strand synthesis in single-stranded AAV vector genomes and to facilitate robust transgene expression at a minimal dose. In this study, the authors investigated the effects of intraocular injections of type 2 scAAV.GFP in mice. Dose-response experiments were performed to compare conventional single-strand AAV type 2 (ssAAV2) vectors with scAAV2 vectors encoding an identical expression cassette. Subretinal injection of 5 x 10(8) viral particles (vp) of scAAV.CMV-GFP resulted in green fluorescent protein (GFP) expression in almost all retinal pigment epithelial (RPE) cells within the area of the small detachment caused by the injection by 3 days and strong, diffuse expression by 7 days. Expression was strong in all retinal cell layers by days 14 and 28. In contrast, 3 days after subretinal injection of 5 x 10(8) vp of ssAAV.CMV-GFP, GFP expression was detectable in few RPE cells. Moreover, the ssAAV vector required 14 days for the attainment of expression levels comparable to those observed using scAAV at day 3. Expression in photoreceptors was not detectable until day 28. Dose-response experiments confirmed that onset of GFP expression was more rapid and robust after subretinal injection of scAAV.CMV-GFP than of ssAAV.CMV-GFP, resulting in pronounced expression in photoreceptors and other retinal neurons. Similar results were obtained for intravitreous injections. These data suggest that scAAV vectors may be advantageous for ocular gene therapy, particularly in retinal diseases that require rapid and robust transgene expression in photoreceptor cells.</abstract><cop>Rockville, MD</cop><pub>ARVO</pub><pmid>17591905</pmid><doi>10.1167/iovs.06-1306</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-0404
ispartof Investigative ophthalmology & visual science, 2007-07, Vol.48 (7), p.3324-3328
issn 0146-0404
1552-5783
1552-5783
language eng
recordid cdi_proquest_miscellaneous_70670550
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biological and medical sciences
Dependovirus - genetics
Eye and associated structures. Visual pathways and centers. Vision
Female
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation - physiology
Gene Transfer Techniques
Genetic Therapy
Genetic Vectors
Green Fluorescent Proteins - genetics
Mice
Mice, Inbred BALB C
Microscopy, Fluorescence
Pigment Epithelium of Eye - metabolism
Plasmids
Transgenes
Vertebrates: nervous system and sense organs
title Ocular Gene Transfer with Self-Complementary AAV Vectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocular%20Gene%20Transfer%20with%20Self-Complementary%20AAV%20Vectors&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Yokoi,%20Katsutoshi&rft.date=2007-07-01&rft.volume=48&rft.issue=7&rft.spage=3324&rft.epage=3328&rft.pages=3324-3328&rft.issn=0146-0404&rft.eissn=1552-5783&rft.coden=IOVSDA&rft_id=info:doi/10.1167/iovs.06-1306&rft_dat=%3Cproquest_cross%3E70670550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70670550&rft_id=info:pmid/17591905&rfr_iscdi=true