Accelerated formation of multicellular 3-D structures by cell-to-cell cross-linking
The three‐dimensional (3‐D) arrangement of cells within tissues is integral to their development and function. Advances in stem cell science and regenerative medicine have stimulated interest in the replication of this architecture in vitro. We have developed a versatile method for controlling short...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2007-08, Vol.97 (6), p.1617-1625 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1625 |
---|---|
container_issue | 6 |
container_start_page | 1617 |
container_title | Biotechnology and bioengineering |
container_volume | 97 |
creator | De Bank, Paul A. Hou, Qingpu Warner, Robert M. Wood, Ian V. Ali, Bahaa E. MacNeil, Sheila Kendall, David A. Kellam, Barrie Shakesheff, Kevin M. Buttery, Lee D.K. |
description | The three‐dimensional (3‐D) arrangement of cells within tissues is integral to their development and function. Advances in stem cell science and regenerative medicine have stimulated interest in the replication of this architecture in vitro. We have developed a versatile method for controlling short‐term cell–cell and cell–matrix interactions via a facile cell surface engineering process that enables the rapid formation of specific 3‐D interactions for a range of cell types. We demonstrate that chemical modification of cell surfaces and matrix proteins can artificially accelerate the cell adhesion process and confirm the ability to control the formation of multicellular aggregates with defined architectures and heterotypic cell types. Direct comparison with a natural aggregation process seen during differentiation of embryonic stem (ES) cells revealed increased expression of developmental regulatory proteins and a concomitant enhancement of ES cell differentiation. Furthermore, this new methodology has numerous applications in generating layered structures. For example, we demonstrate improved transfer of therapeutic human keratinocytes onto a dermal layer in a skin repair model. Biotechnol. Bioeng. 2007; 97: 1617–1625. © 2007 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/bit.21343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70666606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1296801071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5463-35772d6589fbdb95207b078d7f4778b8c21ab0048a314e62b98478985f27bf353</originalsourceid><addsrcrecordid>eNqFkV1LHTEQhoNY6qnthX-gLEKFXkTzsfm6tMdqBWkvekTwJiS7SYnuhyZZ2vPvm_WcVigUczOEeWbmnXkBOMDoGCNETmzIxwTTmu6ABUZKQEQU2gULhBCHlCmyB96kdFe-QnL-GuxhQVHNOFuA76dN4zoXTXZt5cfYmxzGoRp91U9dDiXXTZ2JFYVnVcpxavIUXarsuppTMI9wjlUTx5RgF4b7MPx4C1550yX3bhv3wfX559XyC7z6dnG5PL2CDas5LcKEIC1nUnnbWsUIErYIbIWvhZBWNgQbi1AtDcW148QqWQupJPNEWE8Z3QdHm74PcXycXMq6D2mWYwY3TkkLxMtD_EWQliNipuoXQYIoUYTO4OE_4N04xaFsq4sRghMlRYE-bqCn60Tn9UMMvYlrjZGejdPFOP1kXGHfbxtOtnftM7l1qgAftoBJjel8NEMT0jMnFWEM48KdbLifoXPr_0_Uny5Xf0bDTUVI2f36W2HiveaCCqZvvl5ovrw9X64U17f0N-Btu1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213762987</pqid></control><display><type>article</type><title>Accelerated formation of multicellular 3-D structures by cell-to-cell cross-linking</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Bank, Paul A. ; Hou, Qingpu ; Warner, Robert M. ; Wood, Ian V. ; Ali, Bahaa E. ; MacNeil, Sheila ; Kendall, David A. ; Kellam, Barrie ; Shakesheff, Kevin M. ; Buttery, Lee D.K.</creator><creatorcontrib>De Bank, Paul A. ; Hou, Qingpu ; Warner, Robert M. ; Wood, Ian V. ; Ali, Bahaa E. ; MacNeil, Sheila ; Kendall, David A. ; Kellam, Barrie ; Shakesheff, Kevin M. ; Buttery, Lee D.K.</creatorcontrib><description>The three‐dimensional (3‐D) arrangement of cells within tissues is integral to their development and function. Advances in stem cell science and regenerative medicine have stimulated interest in the replication of this architecture in vitro. We have developed a versatile method for controlling short‐term cell–cell and cell–matrix interactions via a facile cell surface engineering process that enables the rapid formation of specific 3‐D interactions for a range of cell types. We demonstrate that chemical modification of cell surfaces and matrix proteins can artificially accelerate the cell adhesion process and confirm the ability to control the formation of multicellular aggregates with defined architectures and heterotypic cell types. Direct comparison with a natural aggregation process seen during differentiation of embryonic stem (ES) cells revealed increased expression of developmental regulatory proteins and a concomitant enhancement of ES cell differentiation. Furthermore, this new methodology has numerous applications in generating layered structures. For example, we demonstrate improved transfer of therapeutic human keratinocytes onto a dermal layer in a skin repair model. Biotechnol. Bioeng. 2007; 97: 1617–1625. © 2007 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.21343</identifier><identifier>PMID: 17304565</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>3T3 Cells ; aggregation ; Animals ; Biological and medical sciences ; Biotechnology ; Cell adhesion & migration ; Cell Communication - physiology ; cell culture ; Cell Culture Techniques - methods ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; differentiation ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - physiology ; Extracellular Matrix - physiology ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Humans ; Mice ; Proteins ; Stem cells ; three-dimensional ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Biotechnology and bioengineering, 2007-08, Vol.97 (6), p.1617-1625</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>(c) 2007 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Aug 15, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5463-35772d6589fbdb95207b078d7f4778b8c21ab0048a314e62b98478985f27bf353</citedby><cites>FETCH-LOGICAL-c5463-35772d6589fbdb95207b078d7f4778b8c21ab0048a314e62b98478985f27bf353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.21343$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.21343$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18925511$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17304565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Bank, Paul A.</creatorcontrib><creatorcontrib>Hou, Qingpu</creatorcontrib><creatorcontrib>Warner, Robert M.</creatorcontrib><creatorcontrib>Wood, Ian V.</creatorcontrib><creatorcontrib>Ali, Bahaa E.</creatorcontrib><creatorcontrib>MacNeil, Sheila</creatorcontrib><creatorcontrib>Kendall, David A.</creatorcontrib><creatorcontrib>Kellam, Barrie</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><creatorcontrib>Buttery, Lee D.K.</creatorcontrib><title>Accelerated formation of multicellular 3-D structures by cell-to-cell cross-linking</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>The three‐dimensional (3‐D) arrangement of cells within tissues is integral to their development and function. Advances in stem cell science and regenerative medicine have stimulated interest in the replication of this architecture in vitro. We have developed a versatile method for controlling short‐term cell–cell and cell–matrix interactions via a facile cell surface engineering process that enables the rapid formation of specific 3‐D interactions for a range of cell types. We demonstrate that chemical modification of cell surfaces and matrix proteins can artificially accelerate the cell adhesion process and confirm the ability to control the formation of multicellular aggregates with defined architectures and heterotypic cell types. Direct comparison with a natural aggregation process seen during differentiation of embryonic stem (ES) cells revealed increased expression of developmental regulatory proteins and a concomitant enhancement of ES cell differentiation. Furthermore, this new methodology has numerous applications in generating layered structures. For example, we demonstrate improved transfer of therapeutic human keratinocytes onto a dermal layer in a skin repair model. Biotechnol. Bioeng. 2007; 97: 1617–1625. © 2007 Wiley Periodicals, Inc.</description><subject>3T3 Cells</subject><subject>aggregation</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell adhesion & migration</subject><subject>Cell Communication - physiology</subject><subject>cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>differentiation</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Extracellular Matrix - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Mice</subject><subject>Proteins</subject><subject>Stem cells</subject><subject>three-dimensional</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1LHTEQhoNY6qnthX-gLEKFXkTzsfm6tMdqBWkvekTwJiS7SYnuhyZZ2vPvm_WcVigUczOEeWbmnXkBOMDoGCNETmzIxwTTmu6ABUZKQEQU2gULhBCHlCmyB96kdFe-QnL-GuxhQVHNOFuA76dN4zoXTXZt5cfYmxzGoRp91U9dDiXXTZ2JFYVnVcpxavIUXarsuppTMI9wjlUTx5RgF4b7MPx4C1550yX3bhv3wfX559XyC7z6dnG5PL2CDas5LcKEIC1nUnnbWsUIErYIbIWvhZBWNgQbi1AtDcW148QqWQupJPNEWE8Z3QdHm74PcXycXMq6D2mWYwY3TkkLxMtD_EWQliNipuoXQYIoUYTO4OE_4N04xaFsq4sRghMlRYE-bqCn60Tn9UMMvYlrjZGejdPFOP1kXGHfbxtOtnftM7l1qgAftoBJjel8NEMT0jMnFWEM48KdbLifoXPr_0_Uny5Xf0bDTUVI2f36W2HiveaCCqZvvl5ovrw9X64U17f0N-Btu1w</recordid><startdate>20070815</startdate><enddate>20070815</enddate><creator>De Bank, Paul A.</creator><creator>Hou, Qingpu</creator><creator>Warner, Robert M.</creator><creator>Wood, Ian V.</creator><creator>Ali, Bahaa E.</creator><creator>MacNeil, Sheila</creator><creator>Kendall, David A.</creator><creator>Kellam, Barrie</creator><creator>Shakesheff, Kevin M.</creator><creator>Buttery, Lee D.K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070815</creationdate><title>Accelerated formation of multicellular 3-D structures by cell-to-cell cross-linking</title><author>De Bank, Paul A. ; Hou, Qingpu ; Warner, Robert M. ; Wood, Ian V. ; Ali, Bahaa E. ; MacNeil, Sheila ; Kendall, David A. ; Kellam, Barrie ; Shakesheff, Kevin M. ; Buttery, Lee D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5463-35772d6589fbdb95207b078d7f4778b8c21ab0048a314e62b98478985f27bf353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>3T3 Cells</topic><topic>aggregation</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell adhesion & migration</topic><topic>Cell Communication - physiology</topic><topic>cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>differentiation</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Extracellular Matrix - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Mice</topic><topic>Proteins</topic><topic>Stem cells</topic><topic>three-dimensional</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bank, Paul A.</creatorcontrib><creatorcontrib>Hou, Qingpu</creatorcontrib><creatorcontrib>Warner, Robert M.</creatorcontrib><creatorcontrib>Wood, Ian V.</creatorcontrib><creatorcontrib>Ali, Bahaa E.</creatorcontrib><creatorcontrib>MacNeil, Sheila</creatorcontrib><creatorcontrib>Kendall, David A.</creatorcontrib><creatorcontrib>Kellam, Barrie</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><creatorcontrib>Buttery, Lee D.K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bank, Paul A.</au><au>Hou, Qingpu</au><au>Warner, Robert M.</au><au>Wood, Ian V.</au><au>Ali, Bahaa E.</au><au>MacNeil, Sheila</au><au>Kendall, David A.</au><au>Kellam, Barrie</au><au>Shakesheff, Kevin M.</au><au>Buttery, Lee D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated formation of multicellular 3-D structures by cell-to-cell cross-linking</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2007-08-15</date><risdate>2007</risdate><volume>97</volume><issue>6</issue><spage>1617</spage><epage>1625</epage><pages>1617-1625</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>The three‐dimensional (3‐D) arrangement of cells within tissues is integral to their development and function. Advances in stem cell science and regenerative medicine have stimulated interest in the replication of this architecture in vitro. We have developed a versatile method for controlling short‐term cell–cell and cell–matrix interactions via a facile cell surface engineering process that enables the rapid formation of specific 3‐D interactions for a range of cell types. We demonstrate that chemical modification of cell surfaces and matrix proteins can artificially accelerate the cell adhesion process and confirm the ability to control the formation of multicellular aggregates with defined architectures and heterotypic cell types. Direct comparison with a natural aggregation process seen during differentiation of embryonic stem (ES) cells revealed increased expression of developmental regulatory proteins and a concomitant enhancement of ES cell differentiation. Furthermore, this new methodology has numerous applications in generating layered structures. For example, we demonstrate improved transfer of therapeutic human keratinocytes onto a dermal layer in a skin repair model. Biotechnol. Bioeng. 2007; 97: 1617–1625. © 2007 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17304565</pmid><doi>10.1002/bit.21343</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2007-08, Vol.97 (6), p.1617-1625 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_70666606 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 3T3 Cells aggregation Animals Biological and medical sciences Biotechnology Cell adhesion & migration Cell Communication - physiology cell culture Cell Culture Techniques - methods Cell Differentiation Cell Proliferation Cells, Cultured differentiation Embryonic Stem Cells - cytology Embryonic Stem Cells - physiology Extracellular Matrix - physiology Fundamental and applied biological sciences. Psychology Gene expression Humans Mice Proteins Stem cells three-dimensional Tissue engineering Tissue Engineering - methods |
title | Accelerated formation of multicellular 3-D structures by cell-to-cell cross-linking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20formation%20of%20multicellular%203-D%20structures%20by%20cell-to-cell%20cross-linking&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=De%20Bank,%20Paul%20A.&rft.date=2007-08-15&rft.volume=97&rft.issue=6&rft.spage=1617&rft.epage=1625&rft.pages=1617-1625&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.21343&rft_dat=%3Cproquest_cross%3E1296801071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213762987&rft_id=info:pmid/17304565&rfr_iscdi=true |