As easy as flipping a switch?
Proteins that behave as switches help to establish the complex molecular logic that is central to biological systems. Aspiring to be nature's equal, researchers have successfully created protein switches of their own design; in particular, numerous and varied zinc-triggered switches have been m...
Gespeichert in:
Veröffentlicht in: | Current opinion in chemical biology 2007-06, Vol.11 (3), p.342-346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteins that behave as switches help to establish the complex molecular logic that is central to biological systems. Aspiring to be nature's equal, researchers have successfully created protein switches of their own design; in particular, numerous and varied zinc-triggered switches have been made. Recent studies in which such switches have been readily identified from combinatorial protein libraries support the notion that proteins are primed to show allosteric behavior and that newly created ligand-binding sites will often be functionally coupled to the original activity of the protein. If true, this notion suggests that switch engineering might be more tractable than previously thought, boding well for the basic science, sensing and biomedical applications for which protein switches hold much promise. |
---|---|
ISSN: | 1367-5931 1879-0402 |
DOI: | 10.1016/j.cbpa.2007.04.011 |