Mechanisms for Discordant Alternans

Discordant Alternans Mechanism. Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown. Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular electrophysiology 2001-02, Vol.12 (2), p.196-206
Hauptverfasser: WATANABE, MARI A., FENTON, FLAVIO H., EVANS, STEVEN J., HASTINGS, HAROLD M., KARMA, ALAIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 2
container_start_page 196
container_title Journal of cardiovascular electrophysiology
container_volume 12
creator WATANABE, MARI A.
FENTON, FLAVIO H.
EVANS, STEVEN J.
HASTINGS, HAROLD M.
KARMA, ALAIN
description Discordant Alternans Mechanism. Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown. Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries. Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans.
doi_str_mv 10.1046/j.1540-8167.2001.00196.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70649160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70649160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5186-50897ef182841c8900db302696149cd1733fc48f04cd25fa39e2b43931c7a9ad3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMobk7_ghQE71qTJs0HeDPmnI5NvZh6GbI0xc5-zKTD7d-b2jFvvTicA3nec8IDQIBghCChN6sIJQSGHFEWxRCiyJeg0fYI9A8Px36GJAkxZ7gHzpxbeQhTmJyCHkIxjikSfXA1N_pDVbkrXZDVNrjLna5tqqomGBaNsZWq3Dk4yVThzMW-D8Dr_Xgxeghnz5PH0XAW6gRxGiaQC2YyxGNOkOYCwnSJYUwFRUToFDGMM014BolO4yRTWJh4SbDASDMlVIoH4Lrbu7b118a4Rpb-N6YoVGXqjZMMUiIQhR7kHaht7Zw1mVzbvFR2JxGUrSC5kq0H2XqQrSD5K0huffRyf2OzLE36F9wb8cBtB3znhdn9e7GcjsZ-8PGwi-euMdtDXNlPSRlmiXx_msgXvmBTPH-TCf4BosKAdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70649160</pqid></control><display><type>article</type><title>Mechanisms for Discordant Alternans</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>WATANABE, MARI A. ; FENTON, FLAVIO H. ; EVANS, STEVEN J. ; HASTINGS, HAROLD M. ; KARMA, ALAIN</creator><creatorcontrib>WATANABE, MARI A. ; FENTON, FLAVIO H. ; EVANS, STEVEN J. ; HASTINGS, HAROLD M. ; KARMA, ALAIN</creatorcontrib><description>Discordant Alternans Mechanism. Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown. Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries. Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans.</description><identifier>ISSN: 1045-3873</identifier><identifier>EISSN: 1540-8167</identifier><identifier>DOI: 10.1046/j.1540-8167.2001.00196.x</identifier><identifier>PMID: 11232619</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Inc</publisher><subject>Action Potentials - physiology ; Arrhythmias, Cardiac - physiopathology ; Atrial Premature Complexes - physiopathology ; Computer Simulation ; discordant alternans ; dynamic restitution ; Electric Stimulation ; Electrocardiography ; Heart - physiopathology ; Heart Conduction System - physiopathology ; Humans ; Ion Channels - physiology ; Nonlinear Dynamics ; restitution ; Sinoatrial Node - physiopathology ; T wave alternans</subject><ispartof>Journal of cardiovascular electrophysiology, 2001-02, Vol.12 (2), p.196-206</ispartof><rights>Futura Publishing Company, Inc. 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5186-50897ef182841c8900db302696149cd1733fc48f04cd25fa39e2b43931c7a9ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1540-8167.2001.00196.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1540-8167.2001.00196.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11232619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>WATANABE, MARI A.</creatorcontrib><creatorcontrib>FENTON, FLAVIO H.</creatorcontrib><creatorcontrib>EVANS, STEVEN J.</creatorcontrib><creatorcontrib>HASTINGS, HAROLD M.</creatorcontrib><creatorcontrib>KARMA, ALAIN</creatorcontrib><title>Mechanisms for Discordant Alternans</title><title>Journal of cardiovascular electrophysiology</title><addtitle>J Cardiovasc Electrophysiol</addtitle><description>Discordant Alternans Mechanism. Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown. Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries. Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans.</description><subject>Action Potentials - physiology</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Atrial Premature Complexes - physiopathology</subject><subject>Computer Simulation</subject><subject>discordant alternans</subject><subject>dynamic restitution</subject><subject>Electric Stimulation</subject><subject>Electrocardiography</subject><subject>Heart - physiopathology</subject><subject>Heart Conduction System - physiopathology</subject><subject>Humans</subject><subject>Ion Channels - physiology</subject><subject>Nonlinear Dynamics</subject><subject>restitution</subject><subject>Sinoatrial Node - physiopathology</subject><subject>T wave alternans</subject><issn>1045-3873</issn><issn>1540-8167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF1LwzAUhoMobk7_ghQE71qTJs0HeDPmnI5NvZh6GbI0xc5-zKTD7d-b2jFvvTicA3nec8IDQIBghCChN6sIJQSGHFEWxRCiyJeg0fYI9A8Px36GJAkxZ7gHzpxbeQhTmJyCHkIxjikSfXA1N_pDVbkrXZDVNrjLna5tqqomGBaNsZWq3Dk4yVThzMW-D8Dr_Xgxeghnz5PH0XAW6gRxGiaQC2YyxGNOkOYCwnSJYUwFRUToFDGMM014BolO4yRTWJh4SbDASDMlVIoH4Lrbu7b118a4Rpb-N6YoVGXqjZMMUiIQhR7kHaht7Zw1mVzbvFR2JxGUrSC5kq0H2XqQrSD5K0huffRyf2OzLE36F9wb8cBtB3znhdn9e7GcjsZ-8PGwi-euMdtDXNlPSRlmiXx_msgXvmBTPH-TCf4BosKAdw</recordid><startdate>200102</startdate><enddate>200102</enddate><creator>WATANABE, MARI A.</creator><creator>FENTON, FLAVIO H.</creator><creator>EVANS, STEVEN J.</creator><creator>HASTINGS, HAROLD M.</creator><creator>KARMA, ALAIN</creator><general>Blackwell Science Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200102</creationdate><title>Mechanisms for Discordant Alternans</title><author>WATANABE, MARI A. ; FENTON, FLAVIO H. ; EVANS, STEVEN J. ; HASTINGS, HAROLD M. ; KARMA, ALAIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5186-50897ef182841c8900db302696149cd1733fc48f04cd25fa39e2b43931c7a9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials - physiology</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Atrial Premature Complexes - physiopathology</topic><topic>Computer Simulation</topic><topic>discordant alternans</topic><topic>dynamic restitution</topic><topic>Electric Stimulation</topic><topic>Electrocardiography</topic><topic>Heart - physiopathology</topic><topic>Heart Conduction System - physiopathology</topic><topic>Humans</topic><topic>Ion Channels - physiology</topic><topic>Nonlinear Dynamics</topic><topic>restitution</topic><topic>Sinoatrial Node - physiopathology</topic><topic>T wave alternans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WATANABE, MARI A.</creatorcontrib><creatorcontrib>FENTON, FLAVIO H.</creatorcontrib><creatorcontrib>EVANS, STEVEN J.</creatorcontrib><creatorcontrib>HASTINGS, HAROLD M.</creatorcontrib><creatorcontrib>KARMA, ALAIN</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WATANABE, MARI A.</au><au>FENTON, FLAVIO H.</au><au>EVANS, STEVEN J.</au><au>HASTINGS, HAROLD M.</au><au>KARMA, ALAIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms for Discordant Alternans</atitle><jtitle>Journal of cardiovascular electrophysiology</jtitle><addtitle>J Cardiovasc Electrophysiol</addtitle><date>2001-02</date><risdate>2001</risdate><volume>12</volume><issue>2</issue><spage>196</spage><epage>206</epage><pages>196-206</pages><issn>1045-3873</issn><eissn>1540-8167</eissn><abstract>Discordant Alternans Mechanism. Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown. Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries. Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Inc</pub><pmid>11232619</pmid><doi>10.1046/j.1540-8167.2001.00196.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1045-3873
ispartof Journal of cardiovascular electrophysiology, 2001-02, Vol.12 (2), p.196-206
issn 1045-3873
1540-8167
language eng
recordid cdi_proquest_miscellaneous_70649160
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Action Potentials - physiology
Arrhythmias, Cardiac - physiopathology
Atrial Premature Complexes - physiopathology
Computer Simulation
discordant alternans
dynamic restitution
Electric Stimulation
Electrocardiography
Heart - physiopathology
Heart Conduction System - physiopathology
Humans
Ion Channels - physiology
Nonlinear Dynamics
restitution
Sinoatrial Node - physiopathology
T wave alternans
title Mechanisms for Discordant Alternans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20for%20Discordant%20Alternans&rft.jtitle=Journal%20of%20cardiovascular%20electrophysiology&rft.au=WATANABE,%20MARI%20A.&rft.date=2001-02&rft.volume=12&rft.issue=2&rft.spage=196&rft.epage=206&rft.pages=196-206&rft.issn=1045-3873&rft.eissn=1540-8167&rft_id=info:doi/10.1046/j.1540-8167.2001.00196.x&rft_dat=%3Cproquest_cross%3E70649160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70649160&rft_id=info:pmid/11232619&rfr_iscdi=true