Mechanisms for Discordant Alternans
Discordant Alternans Mechanism. Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown. Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation model...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular electrophysiology 2001-02, Vol.12 (2), p.196-206 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 2 |
container_start_page | 196 |
container_title | Journal of cardiovascular electrophysiology |
container_volume | 12 |
creator | WATANABE, MARI A. FENTON, FLAVIO H. EVANS, STEVEN J. HASTINGS, HAROLD M. KARMA, ALAIN |
description | Discordant Alternans Mechanism.
Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown.
Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries.
Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans. |
doi_str_mv | 10.1046/j.1540-8167.2001.00196.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70649160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70649160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5186-50897ef182841c8900db302696149cd1733fc48f04cd25fa39e2b43931c7a9ad3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMobk7_ghQE71qTJs0HeDPmnI5NvZh6GbI0xc5-zKTD7d-b2jFvvTicA3nec8IDQIBghCChN6sIJQSGHFEWxRCiyJeg0fYI9A8Px36GJAkxZ7gHzpxbeQhTmJyCHkIxjikSfXA1N_pDVbkrXZDVNrjLna5tqqomGBaNsZWq3Dk4yVThzMW-D8Dr_Xgxeghnz5PH0XAW6gRxGiaQC2YyxGNOkOYCwnSJYUwFRUToFDGMM014BolO4yRTWJh4SbDASDMlVIoH4Lrbu7b118a4Rpb-N6YoVGXqjZMMUiIQhR7kHaht7Zw1mVzbvFR2JxGUrSC5kq0H2XqQrSD5K0huffRyf2OzLE36F9wb8cBtB3znhdn9e7GcjsZ-8PGwi-euMdtDXNlPSRlmiXx_msgXvmBTPH-TCf4BosKAdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70649160</pqid></control><display><type>article</type><title>Mechanisms for Discordant Alternans</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>WATANABE, MARI A. ; FENTON, FLAVIO H. ; EVANS, STEVEN J. ; HASTINGS, HAROLD M. ; KARMA, ALAIN</creator><creatorcontrib>WATANABE, MARI A. ; FENTON, FLAVIO H. ; EVANS, STEVEN J. ; HASTINGS, HAROLD M. ; KARMA, ALAIN</creatorcontrib><description>Discordant Alternans Mechanism.
Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown.
Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries.
Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans.</description><identifier>ISSN: 1045-3873</identifier><identifier>EISSN: 1540-8167</identifier><identifier>DOI: 10.1046/j.1540-8167.2001.00196.x</identifier><identifier>PMID: 11232619</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Inc</publisher><subject>Action Potentials - physiology ; Arrhythmias, Cardiac - physiopathology ; Atrial Premature Complexes - physiopathology ; Computer Simulation ; discordant alternans ; dynamic restitution ; Electric Stimulation ; Electrocardiography ; Heart - physiopathology ; Heart Conduction System - physiopathology ; Humans ; Ion Channels - physiology ; Nonlinear Dynamics ; restitution ; Sinoatrial Node - physiopathology ; T wave alternans</subject><ispartof>Journal of cardiovascular electrophysiology, 2001-02, Vol.12 (2), p.196-206</ispartof><rights>Futura Publishing Company, Inc. 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5186-50897ef182841c8900db302696149cd1733fc48f04cd25fa39e2b43931c7a9ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1540-8167.2001.00196.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1540-8167.2001.00196.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11232619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>WATANABE, MARI A.</creatorcontrib><creatorcontrib>FENTON, FLAVIO H.</creatorcontrib><creatorcontrib>EVANS, STEVEN J.</creatorcontrib><creatorcontrib>HASTINGS, HAROLD M.</creatorcontrib><creatorcontrib>KARMA, ALAIN</creatorcontrib><title>Mechanisms for Discordant Alternans</title><title>Journal of cardiovascular electrophysiology</title><addtitle>J Cardiovasc Electrophysiol</addtitle><description>Discordant Alternans Mechanism.
Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown.
Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries.
Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans.</description><subject>Action Potentials - physiology</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Atrial Premature Complexes - physiopathology</subject><subject>Computer Simulation</subject><subject>discordant alternans</subject><subject>dynamic restitution</subject><subject>Electric Stimulation</subject><subject>Electrocardiography</subject><subject>Heart - physiopathology</subject><subject>Heart Conduction System - physiopathology</subject><subject>Humans</subject><subject>Ion Channels - physiology</subject><subject>Nonlinear Dynamics</subject><subject>restitution</subject><subject>Sinoatrial Node - physiopathology</subject><subject>T wave alternans</subject><issn>1045-3873</issn><issn>1540-8167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF1LwzAUhoMobk7_ghQE71qTJs0HeDPmnI5NvZh6GbI0xc5-zKTD7d-b2jFvvTicA3nec8IDQIBghCChN6sIJQSGHFEWxRCiyJeg0fYI9A8Px36GJAkxZ7gHzpxbeQhTmJyCHkIxjikSfXA1N_pDVbkrXZDVNrjLna5tqqomGBaNsZWq3Dk4yVThzMW-D8Dr_Xgxeghnz5PH0XAW6gRxGiaQC2YyxGNOkOYCwnSJYUwFRUToFDGMM014BolO4yRTWJh4SbDASDMlVIoH4Lrbu7b118a4Rpb-N6YoVGXqjZMMUiIQhR7kHaht7Zw1mVzbvFR2JxGUrSC5kq0H2XqQrSD5K0huffRyf2OzLE36F9wb8cBtB3znhdn9e7GcjsZ-8PGwi-euMdtDXNlPSRlmiXx_msgXvmBTPH-TCf4BosKAdw</recordid><startdate>200102</startdate><enddate>200102</enddate><creator>WATANABE, MARI A.</creator><creator>FENTON, FLAVIO H.</creator><creator>EVANS, STEVEN J.</creator><creator>HASTINGS, HAROLD M.</creator><creator>KARMA, ALAIN</creator><general>Blackwell Science Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200102</creationdate><title>Mechanisms for Discordant Alternans</title><author>WATANABE, MARI A. ; FENTON, FLAVIO H. ; EVANS, STEVEN J. ; HASTINGS, HAROLD M. ; KARMA, ALAIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5186-50897ef182841c8900db302696149cd1733fc48f04cd25fa39e2b43931c7a9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials - physiology</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Atrial Premature Complexes - physiopathology</topic><topic>Computer Simulation</topic><topic>discordant alternans</topic><topic>dynamic restitution</topic><topic>Electric Stimulation</topic><topic>Electrocardiography</topic><topic>Heart - physiopathology</topic><topic>Heart Conduction System - physiopathology</topic><topic>Humans</topic><topic>Ion Channels - physiology</topic><topic>Nonlinear Dynamics</topic><topic>restitution</topic><topic>Sinoatrial Node - physiopathology</topic><topic>T wave alternans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WATANABE, MARI A.</creatorcontrib><creatorcontrib>FENTON, FLAVIO H.</creatorcontrib><creatorcontrib>EVANS, STEVEN J.</creatorcontrib><creatorcontrib>HASTINGS, HAROLD M.</creatorcontrib><creatorcontrib>KARMA, ALAIN</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WATANABE, MARI A.</au><au>FENTON, FLAVIO H.</au><au>EVANS, STEVEN J.</au><au>HASTINGS, HAROLD M.</au><au>KARMA, ALAIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms for Discordant Alternans</atitle><jtitle>Journal of cardiovascular electrophysiology</jtitle><addtitle>J Cardiovasc Electrophysiol</addtitle><date>2001-02</date><risdate>2001</risdate><volume>12</volume><issue>2</issue><spage>196</spage><epage>206</epage><pages>196-206</pages><issn>1045-3873</issn><eissn>1540-8167</eissn><abstract>Discordant Alternans Mechanism.
Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown.
Methods and Results: We demonstrate by one‐ and two‐dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries.
Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Inc</pub><pmid>11232619</pmid><doi>10.1046/j.1540-8167.2001.00196.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-3873 |
ispartof | Journal of cardiovascular electrophysiology, 2001-02, Vol.12 (2), p.196-206 |
issn | 1045-3873 1540-8167 |
language | eng |
recordid | cdi_proquest_miscellaneous_70649160 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Action Potentials - physiology Arrhythmias, Cardiac - physiopathology Atrial Premature Complexes - physiopathology Computer Simulation discordant alternans dynamic restitution Electric Stimulation Electrocardiography Heart - physiopathology Heart Conduction System - physiopathology Humans Ion Channels - physiology Nonlinear Dynamics restitution Sinoatrial Node - physiopathology T wave alternans |
title | Mechanisms for Discordant Alternans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20for%20Discordant%20Alternans&rft.jtitle=Journal%20of%20cardiovascular%20electrophysiology&rft.au=WATANABE,%20MARI%20A.&rft.date=2001-02&rft.volume=12&rft.issue=2&rft.spage=196&rft.epage=206&rft.pages=196-206&rft.issn=1045-3873&rft.eissn=1540-8167&rft_id=info:doi/10.1046/j.1540-8167.2001.00196.x&rft_dat=%3Cproquest_cross%3E70649160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70649160&rft_id=info:pmid/11232619&rfr_iscdi=true |