Quantitating tissue specificity of human genes to facilitate biomarker discovery

We describe a method to identify candidate cancer biomarkers by analyzing numeric approximations of tissue specificity of human genes. These approximations were calculated by analyzing predicted tissue expression distributions of genes derived from mapping expressed sequence tags (ESTs) to the human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2007-06, Vol.23 (11), p.1348-1355
Hauptverfasser: Vasmatzis, George, Klee, Eric W., Kube, Dagmar M., Therneau, Terry M., Kosari, Farhad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1355
container_issue 11
container_start_page 1348
container_title Bioinformatics
container_volume 23
creator Vasmatzis, George
Klee, Eric W.
Kube, Dagmar M.
Therneau, Terry M.
Kosari, Farhad
description We describe a method to identify candidate cancer biomarkers by analyzing numeric approximations of tissue specificity of human genes. These approximations were calculated by analyzing predicted tissue expression distributions of genes derived from mapping expressed sequence tags (ESTs) to the human genome sequence using a binary indexing algorithm. Tissue-specificity values facilitated high-throughput analysis of the human genes and enabled the identification of genes highly specific to different tissues. Tissue expression distributions for several genes were compared to estimates obtained from other public gene expression datasets and experimentally validated using quantitative RT-PCR on RNA isolated from several human tissues. Our results demonstrate that most human genes (∼98%) are expressed in many tissues (low specificity), and only a small number of genes possess very specific tissue expression profiles. These genes comprise a rich dataset from which novel therapeutic targets and novel diagnostic serum biomarkers may be selected. Contact: vasm@mayo.edu Supplementary information: Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btm102
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_70644357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btm102</oup_id><sourcerecordid>1317466131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-a827f988077678a458d1936f289f2401e4de4fa83483d6e753a1681e5f8858ce3</originalsourceid><addsrcrecordid>eNqNkUtvFDEQhC0EIiHwE0AWEtyWuMevniOKwkOKBEhwHnk97eAwM15sD9L-exztiggu4dQ-fFVd7WLsOYg3IHp5vo0pLiHl2dXoy_m2ziC6B-wUpLEbhQAP_7yFPGFPSrkRQmihzWN2AlaiEtCfss9fVrfUWJvLcs1rLGUlXnbkY4g-1j1PgX9fZ7fwa1qo8Jp4cD5OtwriLcTs8g_KfIzFp1-U90_Zo-CmQs-O84x9e3f59eLD5urT-48Xb682XoOqG4edDT2isNZYdErjCL00ocM-dC0aqZFUcCgVytGQ1dKBQSAdEDV6kmfs9cF3l9PPlUod5haBpsktlNYyWGGUktreC0qpVG9B3gt2AmVvlGngy3_Am7TmpV07QI_GYLutQfoA-ZxKyRSGXY7ts_YDiOG2weHvBodDg0334mi-bmca71THyhrw6gi44t0Uslt8LHccopKA0Dhx4NK6-8_dvwHGV7n_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198668827</pqid></control><display><type>article</type><title>Quantitating tissue specificity of human genes to facilitate biomarker discovery</title><source>Oxford Journals Open Access Collection</source><creator>Vasmatzis, George ; Klee, Eric W. ; Kube, Dagmar M. ; Therneau, Terry M. ; Kosari, Farhad</creator><creatorcontrib>Vasmatzis, George ; Klee, Eric W. ; Kube, Dagmar M. ; Therneau, Terry M. ; Kosari, Farhad</creatorcontrib><description>We describe a method to identify candidate cancer biomarkers by analyzing numeric approximations of tissue specificity of human genes. These approximations were calculated by analyzing predicted tissue expression distributions of genes derived from mapping expressed sequence tags (ESTs) to the human genome sequence using a binary indexing algorithm. Tissue-specificity values facilitated high-throughput analysis of the human genes and enabled the identification of genes highly specific to different tissues. Tissue expression distributions for several genes were compared to estimates obtained from other public gene expression datasets and experimentally validated using quantitative RT-PCR on RNA isolated from several human tissues. Our results demonstrate that most human genes (∼98%) are expressed in many tissues (low specificity), and only a small number of genes possess very specific tissue expression profiles. These genes comprise a rich dataset from which novel therapeutic targets and novel diagnostic serum biomarkers may be selected. Contact: vasm@mayo.edu Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btm102</identifier><identifier>PMID: 17384019</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Biomarkers, Tumor - genetics ; Chromosome Mapping - methods ; Expressed Sequence Tags ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genetic Predisposition to Disease - genetics ; Genome, Human - genetics ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Neoplasm Proteins - genetics ; Neoplasms - diagnosis ; Neoplasms - genetics ; Organ Specificity ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Analysis, DNA - methods</subject><ispartof>Bioinformatics, 2007-06, Vol.23 (11), p.1348-1355</ispartof><rights>The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007</rights><rights>2007 INIST-CNRS</rights><rights>The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-a827f988077678a458d1936f289f2401e4de4fa83483d6e753a1681e5f8858ce3</citedby><cites>FETCH-LOGICAL-c514t-a827f988077678a458d1936f289f2401e4de4fa83483d6e753a1681e5f8858ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btm102$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18843181$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17384019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasmatzis, George</creatorcontrib><creatorcontrib>Klee, Eric W.</creatorcontrib><creatorcontrib>Kube, Dagmar M.</creatorcontrib><creatorcontrib>Therneau, Terry M.</creatorcontrib><creatorcontrib>Kosari, Farhad</creatorcontrib><title>Quantitating tissue specificity of human genes to facilitate biomarker discovery</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>We describe a method to identify candidate cancer biomarkers by analyzing numeric approximations of tissue specificity of human genes. These approximations were calculated by analyzing predicted tissue expression distributions of genes derived from mapping expressed sequence tags (ESTs) to the human genome sequence using a binary indexing algorithm. Tissue-specificity values facilitated high-throughput analysis of the human genes and enabled the identification of genes highly specific to different tissues. Tissue expression distributions for several genes were compared to estimates obtained from other public gene expression datasets and experimentally validated using quantitative RT-PCR on RNA isolated from several human tissues. Our results demonstrate that most human genes (∼98%) are expressed in many tissues (low specificity), and only a small number of genes possess very specific tissue expression profiles. These genes comprise a rich dataset from which novel therapeutic targets and novel diagnostic serum biomarkers may be selected. Contact: vasm@mayo.edu Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Biological and medical sciences</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Chromosome Mapping - methods</subject><subject>Expressed Sequence Tags</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genome, Human - genetics</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - genetics</subject><subject>Organ Specificity</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Analysis, DNA - methods</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtvFDEQhC0EIiHwE0AWEtyWuMevniOKwkOKBEhwHnk97eAwM15sD9L-exztiggu4dQ-fFVd7WLsOYg3IHp5vo0pLiHl2dXoy_m2ziC6B-wUpLEbhQAP_7yFPGFPSrkRQmihzWN2AlaiEtCfss9fVrfUWJvLcs1rLGUlXnbkY4g-1j1PgX9fZ7fwa1qo8Jp4cD5OtwriLcTs8g_KfIzFp1-U90_Zo-CmQs-O84x9e3f59eLD5urT-48Xb682XoOqG4edDT2isNZYdErjCL00ocM-dC0aqZFUcCgVytGQ1dKBQSAdEDV6kmfs9cF3l9PPlUod5haBpsktlNYyWGGUktreC0qpVG9B3gt2AmVvlGngy3_Am7TmpV07QI_GYLutQfoA-ZxKyRSGXY7ts_YDiOG2weHvBodDg0334mi-bmca71THyhrw6gi44t0Uslt8LHccopKA0Dhx4NK6-8_dvwHGV7n_</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Vasmatzis, George</creator><creator>Klee, Eric W.</creator><creator>Kube, Dagmar M.</creator><creator>Therneau, Terry M.</creator><creator>Kosari, Farhad</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070601</creationdate><title>Quantitating tissue specificity of human genes to facilitate biomarker discovery</title><author>Vasmatzis, George ; Klee, Eric W. ; Kube, Dagmar M. ; Therneau, Terry M. ; Kosari, Farhad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-a827f988077678a458d1936f289f2401e4de4fa83483d6e753a1681e5f8858ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological and medical sciences</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Chromosome Mapping - methods</topic><topic>Expressed Sequence Tags</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genome, Human - genetics</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - genetics</topic><topic>Organ Specificity</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasmatzis, George</creatorcontrib><creatorcontrib>Klee, Eric W.</creatorcontrib><creatorcontrib>Kube, Dagmar M.</creatorcontrib><creatorcontrib>Therneau, Terry M.</creatorcontrib><creatorcontrib>Kosari, Farhad</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vasmatzis, George</au><au>Klee, Eric W.</au><au>Kube, Dagmar M.</au><au>Therneau, Terry M.</au><au>Kosari, Farhad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitating tissue specificity of human genes to facilitate biomarker discovery</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>23</volume><issue>11</issue><spage>1348</spage><epage>1355</epage><pages>1348-1355</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><coden>BOINFP</coden><abstract>We describe a method to identify candidate cancer biomarkers by analyzing numeric approximations of tissue specificity of human genes. These approximations were calculated by analyzing predicted tissue expression distributions of genes derived from mapping expressed sequence tags (ESTs) to the human genome sequence using a binary indexing algorithm. Tissue-specificity values facilitated high-throughput analysis of the human genes and enabled the identification of genes highly specific to different tissues. Tissue expression distributions for several genes were compared to estimates obtained from other public gene expression datasets and experimentally validated using quantitative RT-PCR on RNA isolated from several human tissues. Our results demonstrate that most human genes (∼98%) are expressed in many tissues (low specificity), and only a small number of genes possess very specific tissue expression profiles. These genes comprise a rich dataset from which novel therapeutic targets and novel diagnostic serum biomarkers may be selected. Contact: vasm@mayo.edu Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>17384019</pmid><doi>10.1093/bioinformatics/btm102</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2007-06, Vol.23 (11), p.1348-1355
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_proquest_miscellaneous_70644357
source Oxford Journals Open Access Collection
subjects Biological and medical sciences
Biomarkers, Tumor - genetics
Chromosome Mapping - methods
Expressed Sequence Tags
Fundamental and applied biological sciences. Psychology
General aspects
Genetic Predisposition to Disease - genetics
Genome, Human - genetics
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Neoplasm Proteins - genetics
Neoplasms - diagnosis
Neoplasms - genetics
Organ Specificity
Reproducibility of Results
Sensitivity and Specificity
Sequence Analysis, DNA - methods
title Quantitating tissue specificity of human genes to facilitate biomarker discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitating%20tissue%20specificity%20of%20human%20genes%20to%20facilitate%20biomarker%20discovery&rft.jtitle=Bioinformatics&rft.au=Vasmatzis,%20George&rft.date=2007-06-01&rft.volume=23&rft.issue=11&rft.spage=1348&rft.epage=1355&rft.pages=1348-1355&rft.issn=1367-4803&rft.eissn=1367-4811&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btm102&rft_dat=%3Cproquest_TOX%3E1317466131%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198668827&rft_id=info:pmid/17384019&rft_oup_id=10.1093/bioinformatics/btm102&rfr_iscdi=true