Conformational characterization of designed minibarnase

We have designed a minibarnase by removing one module from barnase, a bacterial RNase from Bacillus amyloliquefaciens. Barnase, consisting of 110 amino acid residues, is decomposed into six modules, M1–M6. Module is defined as a peptide segment consisting of contiguous amino acid residues that makes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIOPOLYM 2001-03, Vol.58 (3), p.260-267
Hauptverfasser: Takahashi, Ken-ichi, Noguti, Tosiyuki, Hojo, Hironobu, Ohkubo, Tadayasu, Gō, Mitiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 3
container_start_page 260
container_title BIOPOLYM
container_volume 58
creator Takahashi, Ken-ichi
Noguti, Tosiyuki
Hojo, Hironobu
Ohkubo, Tadayasu
Gō, Mitiko
description We have designed a minibarnase by removing one module from barnase, a bacterial RNase from Bacillus amyloliquefaciens. Barnase, consisting of 110 amino acid residues, is decomposed into six modules, M1–M6. Module is defined as a peptide segment consisting of contiguous amino acid residues that makes a small compact conformation within a globular domain. To understand the role of module in protein architecture, we analyzed NMR and CD spectra of a minibarnase, which lacked 26 amino acid residues corresponding to module M2. We demonstrated the formation of hydrophobic cores in the minibarnase similar to those of barnase. Although its conformational stability against acids and heat was reduced in comparison with barnase, the minibarnase retained cooperative folding character (two‐state folding). Therefore, the folding of the minibarnase consisting of modules M1 and M3–M6 is independent to some extent of module M2. This finding may be useful for future module‐based protein design. © 2001 John Wiley & Sons, Inc. Biopolymers 58: 260–267, 2001
doi_str_mv 10.1002/1097-0282(200103)58:3<260::AID-BIP1003>3.0.CO;2-J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70632640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17839736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5253-514ce3c97952a1a1d868e39f6566ac1332090ddd91d10f674633ec790cb205a13</originalsourceid><addsrcrecordid>eNqVkU1vEzEURS0EoqHwF1BWCBYTnv3G9jggpDJAmrYigIJYPjkeDxjmo9iJoPx6Jk0IG6SKlaWr63OldxgzHCYcQDzlYHQGohCPBQAHfCKLKT4XCqbTk_mr7OX83VDDFziBSbl4JrKzW2x0-HObjQBAZSiFPGL3UvoKkOfI4S474pwrg4UaMV32Xd3H1q5D39lm7L7YaN3ax_DrOhr39bjyKXzufDVuQxdWNnY2-fvsTm2b5B_s32P28c3rZXmaXSxm8_LkInPDLGaS586jM9pIYbnlVaEKj6ZWUinrOKIAA1VVGV5xqJXOFaJ32oBbCZCW4zF7tONexv77xqc1tSE53zS28_0mkQaFQuVwY1HwPAeB6sYi1wUafV18vyu62KcUfU2XMbQ2XhEH2vqh7a1pe2va-SFZENLgh2jwQ3s_QwRULkjQ2cB8uB_frFpf_SXuheDhjj9C46_-Y_Hfg3-igZvtuCGt_c8D18ZvpDRqSZ_ezuj0w3J5PoNzWuJv9oO12A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17839736</pqid></control><display><type>article</type><title>Conformational characterization of designed minibarnase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Takahashi, Ken-ichi ; Noguti, Tosiyuki ; Hojo, Hironobu ; Ohkubo, Tadayasu ; Gō, Mitiko</creator><creatorcontrib>Takahashi, Ken-ichi ; Noguti, Tosiyuki ; Hojo, Hironobu ; Ohkubo, Tadayasu ; Gō, Mitiko</creatorcontrib><description>We have designed a minibarnase by removing one module from barnase, a bacterial RNase from Bacillus amyloliquefaciens. Barnase, consisting of 110 amino acid residues, is decomposed into six modules, M1–M6. Module is defined as a peptide segment consisting of contiguous amino acid residues that makes a small compact conformation within a globular domain. To understand the role of module in protein architecture, we analyzed NMR and CD spectra of a minibarnase, which lacked 26 amino acid residues corresponding to module M2. We demonstrated the formation of hydrophobic cores in the minibarnase similar to those of barnase. Although its conformational stability against acids and heat was reduced in comparison with barnase, the minibarnase retained cooperative folding character (two‐state folding). Therefore, the folding of the minibarnase consisting of modules M1 and M3–M6 is independent to some extent of module M2. This finding may be useful for future module‐based protein design. © 2001 John Wiley &amp; Sons, Inc. Biopolymers 58: 260–267, 2001</description><identifier>ISSN: 0006-3525</identifier><identifier>EISSN: 1097-0282</identifier><identifier>DOI: 10.1002/1097-0282(200103)58:3&lt;260::AID-BIP1003&gt;3.0.CO;2-J</identifier><identifier>PMID: 11169386</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Acids - chemistry ; Amino acids ; Bacillus amyloliquefaciens ; Bacteria ; barnase ; Circular Dichroism ; conformational stability ; Conformations ; Enzyme Stability ; Evolution, Molecular ; exon shuffling ; Genes ; Hot Temperature ; Magnetic Resonance Spectroscopy ; minibarnase ; miniprotein ; Models, Molecular ; module ; Molecular structure ; Nuclear magnetic resonance spectroscopy ; Protein Conformation ; Protein Engineering ; protein evolution ; Protein Folding ; Ribonucleases - chemistry ; two-state equilibrium</subject><ispartof>BIOPOLYM, 2001-03, Vol.58 (3), p.260-267</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Inc.</rights><rights>Copyright 2001 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5253-514ce3c97952a1a1d868e39f6566ac1332090ddd91d10f674633ec790cb205a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0282%28200103%2958%3A3%3C260%3A%3AAID-BIP1003%3E3.0.CO%3B2-J$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0282%28200103%2958%3A3%3C260%3A%3AAID-BIP1003%3E3.0.CO%3B2-J$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11169386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takahashi, Ken-ichi</creatorcontrib><creatorcontrib>Noguti, Tosiyuki</creatorcontrib><creatorcontrib>Hojo, Hironobu</creatorcontrib><creatorcontrib>Ohkubo, Tadayasu</creatorcontrib><creatorcontrib>Gō, Mitiko</creatorcontrib><title>Conformational characterization of designed minibarnase</title><title>BIOPOLYM</title><addtitle>Biopolymers</addtitle><description>We have designed a minibarnase by removing one module from barnase, a bacterial RNase from Bacillus amyloliquefaciens. Barnase, consisting of 110 amino acid residues, is decomposed into six modules, M1–M6. Module is defined as a peptide segment consisting of contiguous amino acid residues that makes a small compact conformation within a globular domain. To understand the role of module in protein architecture, we analyzed NMR and CD spectra of a minibarnase, which lacked 26 amino acid residues corresponding to module M2. We demonstrated the formation of hydrophobic cores in the minibarnase similar to those of barnase. Although its conformational stability against acids and heat was reduced in comparison with barnase, the minibarnase retained cooperative folding character (two‐state folding). Therefore, the folding of the minibarnase consisting of modules M1 and M3–M6 is independent to some extent of module M2. This finding may be useful for future module‐based protein design. © 2001 John Wiley &amp; Sons, Inc. Biopolymers 58: 260–267, 2001</description><subject>Acids - chemistry</subject><subject>Amino acids</subject><subject>Bacillus amyloliquefaciens</subject><subject>Bacteria</subject><subject>barnase</subject><subject>Circular Dichroism</subject><subject>conformational stability</subject><subject>Conformations</subject><subject>Enzyme Stability</subject><subject>Evolution, Molecular</subject><subject>exon shuffling</subject><subject>Genes</subject><subject>Hot Temperature</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>minibarnase</subject><subject>miniprotein</subject><subject>Models, Molecular</subject><subject>module</subject><subject>Molecular structure</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>protein evolution</subject><subject>Protein Folding</subject><subject>Ribonucleases - chemistry</subject><subject>two-state equilibrium</subject><issn>0006-3525</issn><issn>1097-0282</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkU1vEzEURS0EoqHwF1BWCBYTnv3G9jggpDJAmrYigIJYPjkeDxjmo9iJoPx6Jk0IG6SKlaWr63OldxgzHCYcQDzlYHQGohCPBQAHfCKLKT4XCqbTk_mr7OX83VDDFziBSbl4JrKzW2x0-HObjQBAZSiFPGL3UvoKkOfI4S474pwrg4UaMV32Xd3H1q5D39lm7L7YaN3ax_DrOhr39bjyKXzufDVuQxdWNnY2-fvsTm2b5B_s32P28c3rZXmaXSxm8_LkInPDLGaS586jM9pIYbnlVaEKj6ZWUinrOKIAA1VVGV5xqJXOFaJ32oBbCZCW4zF7tONexv77xqc1tSE53zS28_0mkQaFQuVwY1HwPAeB6sYi1wUafV18vyu62KcUfU2XMbQ2XhEH2vqh7a1pe2va-SFZENLgh2jwQ3s_QwRULkjQ2cB8uB_frFpf_SXuheDhjj9C46_-Y_Hfg3-igZvtuCGt_c8D18ZvpDRqSZ_ezuj0w3J5PoNzWuJv9oO12A</recordid><startdate>200103</startdate><enddate>200103</enddate><creator>Takahashi, Ken-ichi</creator><creator>Noguti, Tosiyuki</creator><creator>Hojo, Hironobu</creator><creator>Ohkubo, Tadayasu</creator><creator>Gō, Mitiko</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200103</creationdate><title>Conformational characterization of designed minibarnase</title><author>Takahashi, Ken-ichi ; Noguti, Tosiyuki ; Hojo, Hironobu ; Ohkubo, Tadayasu ; Gō, Mitiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5253-514ce3c97952a1a1d868e39f6566ac1332090ddd91d10f674633ec790cb205a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acids - chemistry</topic><topic>Amino acids</topic><topic>Bacillus amyloliquefaciens</topic><topic>Bacteria</topic><topic>barnase</topic><topic>Circular Dichroism</topic><topic>conformational stability</topic><topic>Conformations</topic><topic>Enzyme Stability</topic><topic>Evolution, Molecular</topic><topic>exon shuffling</topic><topic>Genes</topic><topic>Hot Temperature</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>minibarnase</topic><topic>miniprotein</topic><topic>Models, Molecular</topic><topic>module</topic><topic>Molecular structure</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>protein evolution</topic><topic>Protein Folding</topic><topic>Ribonucleases - chemistry</topic><topic>two-state equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Ken-ichi</creatorcontrib><creatorcontrib>Noguti, Tosiyuki</creatorcontrib><creatorcontrib>Hojo, Hironobu</creatorcontrib><creatorcontrib>Ohkubo, Tadayasu</creatorcontrib><creatorcontrib>Gō, Mitiko</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BIOPOLYM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Ken-ichi</au><au>Noguti, Tosiyuki</au><au>Hojo, Hironobu</au><au>Ohkubo, Tadayasu</au><au>Gō, Mitiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational characterization of designed minibarnase</atitle><jtitle>BIOPOLYM</jtitle><addtitle>Biopolymers</addtitle><date>2001-03</date><risdate>2001</risdate><volume>58</volume><issue>3</issue><spage>260</spage><epage>267</epage><pages>260-267</pages><issn>0006-3525</issn><eissn>1097-0282</eissn><abstract>We have designed a minibarnase by removing one module from barnase, a bacterial RNase from Bacillus amyloliquefaciens. Barnase, consisting of 110 amino acid residues, is decomposed into six modules, M1–M6. Module is defined as a peptide segment consisting of contiguous amino acid residues that makes a small compact conformation within a globular domain. To understand the role of module in protein architecture, we analyzed NMR and CD spectra of a minibarnase, which lacked 26 amino acid residues corresponding to module M2. We demonstrated the formation of hydrophobic cores in the minibarnase similar to those of barnase. Although its conformational stability against acids and heat was reduced in comparison with barnase, the minibarnase retained cooperative folding character (two‐state folding). Therefore, the folding of the minibarnase consisting of modules M1 and M3–M6 is independent to some extent of module M2. This finding may be useful for future module‐based protein design. © 2001 John Wiley &amp; Sons, Inc. Biopolymers 58: 260–267, 2001</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11169386</pmid><doi>10.1002/1097-0282(200103)58:3&lt;260::AID-BIP1003&gt;3.0.CO;2-J</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3525
ispartof BIOPOLYM, 2001-03, Vol.58 (3), p.260-267
issn 0006-3525
1097-0282
language eng
recordid cdi_proquest_miscellaneous_70632640
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acids - chemistry
Amino acids
Bacillus amyloliquefaciens
Bacteria
barnase
Circular Dichroism
conformational stability
Conformations
Enzyme Stability
Evolution, Molecular
exon shuffling
Genes
Hot Temperature
Magnetic Resonance Spectroscopy
minibarnase
miniprotein
Models, Molecular
module
Molecular structure
Nuclear magnetic resonance spectroscopy
Protein Conformation
Protein Engineering
protein evolution
Protein Folding
Ribonucleases - chemistry
two-state equilibrium
title Conformational characterization of designed minibarnase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20characterization%20of%20designed%20minibarnase&rft.jtitle=BIOPOLYM&rft.au=Takahashi,%20Ken-ichi&rft.date=2001-03&rft.volume=58&rft.issue=3&rft.spage=260&rft.epage=267&rft.pages=260-267&rft.issn=0006-3525&rft.eissn=1097-0282&rft_id=info:doi/10.1002/1097-0282(200103)58:3%3C260::AID-BIP1003%3E3.0.CO;2-J&rft_dat=%3Cproquest_cross%3E17839736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17839736&rft_id=info:pmid/11169386&rfr_iscdi=true