Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3
It was previously shown that patients with chronic myeloid leukemia (CML) have a rare but consistently detectable population of quiescent (G0) leukemic (Philadelphia chromosome–positive and BCR-ABL–positive [BCR-ABL+]) CD34+ cells. In the study described here, most such cells expressed a primitive p...
Gespeichert in:
Veröffentlicht in: | Blood 2001-02, Vol.97 (3), p.720-728 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It was previously shown that patients with chronic myeloid leukemia (CML) have a rare but consistently detectable population of quiescent (G0) leukemic (Philadelphia chromosome–positive and BCR-ABL–positive [BCR-ABL+]) CD34+ cells. In the study described here, most such cells expressed a primitive phenotype (CD38−, CD45RA−, CD71−, and HLA-DRlo) and cultures of these cells containing growth factors produced ultimately larger, but initially more slowly growing clones than do cultures of initially cycling CD34+ leukemic cells. Initially quiescent leukemic cells expressing BCR-ABLproliferated in single-cell cultures in the absence of added growth factors, thereby demonstrating their ability to spontaneously exit G0 and enter a continuously cycling state. Interestingly, on isolation, few of these quiescentBCR-ABL+ cells contained either interleukin-3 (IL-3) or granulocyte colony-stimulating factor (G-CSF) transcripts, whereas both were present in most cyclingBCR-ABL+ CD34+ cells. However, after 4 days of culture in the absence of added growth factors and in association with their entry into the cell cycle (as indicated by up-regulation of Ki-67 and cdc25 transcripts), IL-3 transcripts became detectable. These findings show that entry of leukemic (BCR-ABL–expressing) progenitors into a quiescent (G0) state in vivo is highest among the most primitive leukemic cell populations, associated with a down-regulation of IL-3 and G-CSF gene expression, and spontaneously reversible in association with up-regulation of IL-3 expression. These results highlight the potential physiologic relevance of quiescent CML progenitors, even in treated patients, in whom these cells would be predicted to have a proliferative advantage over their quiescent normal counterparts when cytokine concentrations are low. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V97.3.720 |