A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms
Movement execution results in the simultaneous generation of movement-related potentials (MRP) as well as changes in the power of Mu and Beta rhythms. This paper proposes a new self-paced multi-channel BI that combines features extracted from MRPs and from changes in the power of Mu and Beta rhythms...
Gespeichert in:
Veröffentlicht in: | Journal of computational neuroscience 2007-08, Vol.23 (1), p.21-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Journal of computational neuroscience |
container_volume | 23 |
creator | Fatourechi, Mehrdad Birch, Gary E Ward, Rabab K |
description | Movement execution results in the simultaneous generation of movement-related potentials (MRP) as well as changes in the power of Mu and Beta rhythms. This paper proposes a new self-paced multi-channel BI that combines features extracted from MRPs and from changes in the power of Mu and Beta rhythms. We developed a new algorithm to classify the high-dimensional feature space. It uses a two-stage multiple-classifier system (MCS). First, an MCS classifies each neurological phenomenon separately using the information extracted from specific EEG channels (EEG channels are selected by a genetic algorithm). In the second stage, another MCS combines the outputs of MCSs developed in the first stage. Analysis of the data of four able-bodied subjects shows the superior performance of the proposed algorithm compared with a scheme where the features were all combined in a single feature vector and then classified. |
doi_str_mv | 10.1007/s10827-006-0017-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70625044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70625044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-86ac98ba6da1aa7b6cb8288ea6760619c970750fda184ee18917adf2477658c63</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rj6A7xI8OCttSrpTqWPy7J-wIIXPYd0utrupT_GJK3MvzfLDAhePISQ1PO-UDxCvEZ4jwD0ISFYRRWAKQep0k_EARvSlbGkn4oDtKqtGo36SrxI6QEALCE8F1dICo02zUGkG5l4HqqjD9zLLvppldOaOQ7lQ6ZTyrzIPPos98RJLtsvXnjNMvLsc0kct1yek5-T9Gsvw-jXH4UrLXnkMv3NUW7DpTiOpzwu6aV4NpQAv7rc1-L7x7tvt5-r-6-fvtze3FdBN5Qra3xobedN79F76kzorLKWvSEDBtvQElADQxnbmhlti-T7QdVEprHB6Gvx7tx7jNvPnVN2y5QCz7NfeduTIzCqgbr-L6igAUV1W8C3_4AP2x7XsoRTSHVtDGCB8AyFuKUUeXDHOC0-nhyCe_Tmzt5c8eYevTldMm8uxXu3cP83cRGl_wC6CJNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217446601</pqid></control><display><type>article</type><title>A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Fatourechi, Mehrdad ; Birch, Gary E ; Ward, Rabab K</creator><creatorcontrib>Fatourechi, Mehrdad ; Birch, Gary E ; Ward, Rabab K</creatorcontrib><description>Movement execution results in the simultaneous generation of movement-related potentials (MRP) as well as changes in the power of Mu and Beta rhythms. This paper proposes a new self-paced multi-channel BI that combines features extracted from MRPs and from changes in the power of Mu and Beta rhythms. We developed a new algorithm to classify the high-dimensional feature space. It uses a two-stage multiple-classifier system (MCS). First, an MCS classifies each neurological phenomenon separately using the information extracted from specific EEG channels (EEG channels are selected by a genetic algorithm). In the second stage, another MCS combines the outputs of MCSs developed in the first stage. Analysis of the data of four able-bodied subjects shows the superior performance of the proposed algorithm compared with a scheme where the features were all combined in a single feature vector and then classified.</description><identifier>ISSN: 0929-5313</identifier><identifier>EISSN: 1573-6873</identifier><identifier>DOI: 10.1007/s10827-006-0017-3</identifier><identifier>PMID: 17216365</identifier><identifier>CODEN: JCNEFR</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Brain - physiology ; Electroencephalography ; Evoked Potentials, Visual - physiology ; Humans ; Movement - physiology ; Periodicity ; Photic Stimulation - methods ; Psychomotor Performance - physiology ; Time Perception - physiology ; User-Computer Interface</subject><ispartof>Journal of computational neuroscience, 2007-08, Vol.23 (1), p.21-37</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-86ac98ba6da1aa7b6cb8288ea6760619c970750fda184ee18917adf2477658c63</citedby><cites>FETCH-LOGICAL-c357t-86ac98ba6da1aa7b6cb8288ea6760619c970750fda184ee18917adf2477658c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17216365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatourechi, Mehrdad</creatorcontrib><creatorcontrib>Birch, Gary E</creatorcontrib><creatorcontrib>Ward, Rabab K</creatorcontrib><title>A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms</title><title>Journal of computational neuroscience</title><addtitle>J Comput Neurosci</addtitle><description>Movement execution results in the simultaneous generation of movement-related potentials (MRP) as well as changes in the power of Mu and Beta rhythms. This paper proposes a new self-paced multi-channel BI that combines features extracted from MRPs and from changes in the power of Mu and Beta rhythms. We developed a new algorithm to classify the high-dimensional feature space. It uses a two-stage multiple-classifier system (MCS). First, an MCS classifies each neurological phenomenon separately using the information extracted from specific EEG channels (EEG channels are selected by a genetic algorithm). In the second stage, another MCS combines the outputs of MCSs developed in the first stage. Analysis of the data of four able-bodied subjects shows the superior performance of the proposed algorithm compared with a scheme where the features were all combined in a single feature vector and then classified.</description><subject>Brain - physiology</subject><subject>Electroencephalography</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Humans</subject><subject>Movement - physiology</subject><subject>Periodicity</subject><subject>Photic Stimulation - methods</subject><subject>Psychomotor Performance - physiology</subject><subject>Time Perception - physiology</subject><subject>User-Computer Interface</subject><issn>0929-5313</issn><issn>1573-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU2LFDEQhoMo7rj6A7xI8OCttSrpTqWPy7J-wIIXPYd0utrupT_GJK3MvzfLDAhePISQ1PO-UDxCvEZ4jwD0ISFYRRWAKQep0k_EARvSlbGkn4oDtKqtGo36SrxI6QEALCE8F1dICo02zUGkG5l4HqqjD9zLLvppldOaOQ7lQ6ZTyrzIPPos98RJLtsvXnjNMvLsc0kct1yek5-T9Gsvw-jXH4UrLXnkMv3NUW7DpTiOpzwu6aV4NpQAv7rc1-L7x7tvt5-r-6-fvtze3FdBN5Qra3xobedN79F76kzorLKWvSEDBtvQElADQxnbmhlti-T7QdVEprHB6Gvx7tx7jNvPnVN2y5QCz7NfeduTIzCqgbr-L6igAUV1W8C3_4AP2x7XsoRTSHVtDGCB8AyFuKUUeXDHOC0-nhyCe_Tmzt5c8eYevTldMm8uxXu3cP83cRGl_wC6CJNi</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Fatourechi, Mehrdad</creator><creator>Birch, Gary E</creator><creator>Ward, Rabab K</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20070801</creationdate><title>A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms</title><author>Fatourechi, Mehrdad ; Birch, Gary E ; Ward, Rabab K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-86ac98ba6da1aa7b6cb8288ea6760619c970750fda184ee18917adf2477658c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Brain - physiology</topic><topic>Electroencephalography</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Humans</topic><topic>Movement - physiology</topic><topic>Periodicity</topic><topic>Photic Stimulation - methods</topic><topic>Psychomotor Performance - physiology</topic><topic>Time Perception - physiology</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatourechi, Mehrdad</creatorcontrib><creatorcontrib>Birch, Gary E</creatorcontrib><creatorcontrib>Ward, Rabab K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatourechi, Mehrdad</au><au>Birch, Gary E</au><au>Ward, Rabab K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms</atitle><jtitle>Journal of computational neuroscience</jtitle><addtitle>J Comput Neurosci</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>23</volume><issue>1</issue><spage>21</spage><epage>37</epage><pages>21-37</pages><issn>0929-5313</issn><eissn>1573-6873</eissn><coden>JCNEFR</coden><abstract>Movement execution results in the simultaneous generation of movement-related potentials (MRP) as well as changes in the power of Mu and Beta rhythms. This paper proposes a new self-paced multi-channel BI that combines features extracted from MRPs and from changes in the power of Mu and Beta rhythms. We developed a new algorithm to classify the high-dimensional feature space. It uses a two-stage multiple-classifier system (MCS). First, an MCS classifies each neurological phenomenon separately using the information extracted from specific EEG channels (EEG channels are selected by a genetic algorithm). In the second stage, another MCS combines the outputs of MCSs developed in the first stage. Analysis of the data of four able-bodied subjects shows the superior performance of the proposed algorithm compared with a scheme where the features were all combined in a single feature vector and then classified.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>17216365</pmid><doi>10.1007/s10827-006-0017-3</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5313 |
ispartof | Journal of computational neuroscience, 2007-08, Vol.23 (1), p.21-37 |
issn | 0929-5313 1573-6873 |
language | eng |
recordid | cdi_proquest_miscellaneous_70625044 |
source | MEDLINE; SpringerNature Journals |
subjects | Brain - physiology Electroencephalography Evoked Potentials, Visual - physiology Humans Movement - physiology Periodicity Photic Stimulation - methods Psychomotor Performance - physiology Time Perception - physiology User-Computer Interface |
title | A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-paced%20brain%20interface%20system%20that%20uses%20movement%20related%20potentials%20and%20changes%20in%20the%20power%20of%20brain%20rhythms&rft.jtitle=Journal%20of%20computational%20neuroscience&rft.au=Fatourechi,%20Mehrdad&rft.date=2007-08-01&rft.volume=23&rft.issue=1&rft.spage=21&rft.epage=37&rft.pages=21-37&rft.issn=0929-5313&rft.eissn=1573-6873&rft.coden=JCNEFR&rft_id=info:doi/10.1007/s10827-006-0017-3&rft_dat=%3Cproquest_cross%3E70625044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217446601&rft_id=info:pmid/17216365&rfr_iscdi=true |