Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors

In some halides RX, the halogen X has a region of positive electrostatic potential on its outermost portion, centered around the extension of the R-X bond. The electrostatic attraction between this positive region and a lone pair of a Lewis base is termed halogen bonding. The existence and magnitude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2007-07, Vol.13 (6-7), p.643-650
Hauptverfasser: Politzer, Peter, Murray, Jane S, Concha, Monica C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 6-7
container_start_page 643
container_title Journal of molecular modeling
container_volume 13
creator Politzer, Peter
Murray, Jane S
Concha, Monica C
description In some halides RX, the halogen X has a region of positive electrostatic potential on its outermost portion, centered around the extension of the R-X bond. The electrostatic attraction between this positive region and a lone pair of a Lewis base is termed halogen bonding. The existence and magnitudes of such positive potentials on some covalently bonded halogens, and the characteristic directionality of the interaction, can be explained in terms of the degree of sp hybridization and polarizability of X and the electronegativity of R. Halogen bonding increases in strength in the order Cl < Br < I; fluorine is frequently said to not form halogen bonds, although a notable result of the present study is computational evidence that it does have the capability of doing so, if R is sufficiently electron withdrawing. An increasingly important application of halogen bonding is in the design of new materials (e.g., crystal engineering). In this paper, we present the calculated energies of a series of halogen-bonding interactions that could be the basis for forming linear chains, of types X---X---X--- or X---Y---X---Y---. We focus upon chlorides and bromides, and nitrogen bases. The B3PW91/6-311G(3df,2p) and MP2/6-311++G(3df,2p) procedures were used. We show how the computed electrostatic potentials (B3PW91/6-31G**) can provide guidance in selecting appropriate halide/base pairs.
doi_str_mv 10.1007/s00894-007-0176-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70624039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70624039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-e6dc7a26e38612c0b715eec64978ac0c031ef36f4f9e55e1a3e40e7132e6e4ae3</originalsourceid><addsrcrecordid>eNpFkLFOwzAURS0EolXpB7AgT0wYnu3EadhQBRSpEgvMkeO8pEGJndoJiL8noUVM70rv3jMcQi453HKA5C4ArNKIjZEBTxRLT8gc0mjFYhDylMy54sBEGsGMLEP4AAAuYhULcU5mPJGKRyDnZL_RjavQ0tzZorYV1bag_Q5pgaGuLHUltfhFW92jr3UT7qnzlba1obl3bT22bqjZNc5P8Xfcod_pLlD8HKllM_y9Ai2cdT5ckLNyBOHyeBfk_enxbb1h29fnl_XDlhmp4p6hKkyihUK5UlwYyBMeIxoVpclKGzAgOZZSlVGZYhwj1xIjwIRLgQojjXJBrg_czrv9gKHP2joYbBpt0Q0hS0CJUUE6FvmhaLwLwWOZdb5utf_OOGST6uygOpvipDqbNldH-JC3WPwvjmLlD5iDeqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70624039</pqid></control><display><type>article</type><title>Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Politzer, Peter ; Murray, Jane S ; Concha, Monica C</creator><creatorcontrib>Politzer, Peter ; Murray, Jane S ; Concha, Monica C</creatorcontrib><description>In some halides RX, the halogen X has a region of positive electrostatic potential on its outermost portion, centered around the extension of the R-X bond. The electrostatic attraction between this positive region and a lone pair of a Lewis base is termed halogen bonding. The existence and magnitudes of such positive potentials on some covalently bonded halogens, and the characteristic directionality of the interaction, can be explained in terms of the degree of sp hybridization and polarizability of X and the electronegativity of R. Halogen bonding increases in strength in the order Cl &lt; Br &lt; I; fluorine is frequently said to not form halogen bonds, although a notable result of the present study is computational evidence that it does have the capability of doing so, if R is sufficiently electron withdrawing. An increasingly important application of halogen bonding is in the design of new materials (e.g., crystal engineering). In this paper, we present the calculated energies of a series of halogen-bonding interactions that could be the basis for forming linear chains, of types X---X---X--- or X---Y---X---Y---. We focus upon chlorides and bromides, and nitrogen bases. The B3PW91/6-311G(3df,2p) and MP2/6-311++G(3df,2p) procedures were used. We show how the computed electrostatic potentials (B3PW91/6-31G**) can provide guidance in selecting appropriate halide/base pairs.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-007-0176-9</identifier><identifier>PMID: 17361403</identifier><language>eng</language><publisher>Germany</publisher><subject>Bromides - chemistry ; Chlorides - chemistry ; Crystallization ; Electrons ; Fluorides - chemistry ; Halogens - chemistry ; Models, Chemical ; Static Electricity ; Thermodynamics</subject><ispartof>Journal of molecular modeling, 2007-07, Vol.13 (6-7), p.643-650</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-e6dc7a26e38612c0b715eec64978ac0c031ef36f4f9e55e1a3e40e7132e6e4ae3</citedby><cites>FETCH-LOGICAL-c365t-e6dc7a26e38612c0b715eec64978ac0c031ef36f4f9e55e1a3e40e7132e6e4ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17361403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Politzer, Peter</creatorcontrib><creatorcontrib>Murray, Jane S</creatorcontrib><creatorcontrib>Concha, Monica C</creatorcontrib><title>Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><description>In some halides RX, the halogen X has a region of positive electrostatic potential on its outermost portion, centered around the extension of the R-X bond. The electrostatic attraction between this positive region and a lone pair of a Lewis base is termed halogen bonding. The existence and magnitudes of such positive potentials on some covalently bonded halogens, and the characteristic directionality of the interaction, can be explained in terms of the degree of sp hybridization and polarizability of X and the electronegativity of R. Halogen bonding increases in strength in the order Cl &lt; Br &lt; I; fluorine is frequently said to not form halogen bonds, although a notable result of the present study is computational evidence that it does have the capability of doing so, if R is sufficiently electron withdrawing. An increasingly important application of halogen bonding is in the design of new materials (e.g., crystal engineering). In this paper, we present the calculated energies of a series of halogen-bonding interactions that could be the basis for forming linear chains, of types X---X---X--- or X---Y---X---Y---. We focus upon chlorides and bromides, and nitrogen bases. The B3PW91/6-311G(3df,2p) and MP2/6-311++G(3df,2p) procedures were used. We show how the computed electrostatic potentials (B3PW91/6-31G**) can provide guidance in selecting appropriate halide/base pairs.</description><subject>Bromides - chemistry</subject><subject>Chlorides - chemistry</subject><subject>Crystallization</subject><subject>Electrons</subject><subject>Fluorides - chemistry</subject><subject>Halogens - chemistry</subject><subject>Models, Chemical</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkLFOwzAURS0EolXpB7AgT0wYnu3EadhQBRSpEgvMkeO8pEGJndoJiL8noUVM70rv3jMcQi453HKA5C4ArNKIjZEBTxRLT8gc0mjFYhDylMy54sBEGsGMLEP4AAAuYhULcU5mPJGKRyDnZL_RjavQ0tzZorYV1bag_Q5pgaGuLHUltfhFW92jr3UT7qnzlba1obl3bT22bqjZNc5P8Xfcod_pLlD8HKllM_y9Ai2cdT5ckLNyBOHyeBfk_enxbb1h29fnl_XDlhmp4p6hKkyihUK5UlwYyBMeIxoVpclKGzAgOZZSlVGZYhwj1xIjwIRLgQojjXJBrg_czrv9gKHP2joYbBpt0Q0hS0CJUUE6FvmhaLwLwWOZdb5utf_OOGST6uygOpvipDqbNldH-JC3WPwvjmLlD5iDeqg</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Politzer, Peter</creator><creator>Murray, Jane S</creator><creator>Concha, Monica C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors</title><author>Politzer, Peter ; Murray, Jane S ; Concha, Monica C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-e6dc7a26e38612c0b715eec64978ac0c031ef36f4f9e55e1a3e40e7132e6e4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bromides - chemistry</topic><topic>Chlorides - chemistry</topic><topic>Crystallization</topic><topic>Electrons</topic><topic>Fluorides - chemistry</topic><topic>Halogens - chemistry</topic><topic>Models, Chemical</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Politzer, Peter</creatorcontrib><creatorcontrib>Murray, Jane S</creatorcontrib><creatorcontrib>Concha, Monica C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Politzer, Peter</au><au>Murray, Jane S</au><au>Concha, Monica C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors</atitle><jtitle>Journal of molecular modeling</jtitle><addtitle>J Mol Model</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>13</volume><issue>6-7</issue><spage>643</spage><epage>650</epage><pages>643-650</pages><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>In some halides RX, the halogen X has a region of positive electrostatic potential on its outermost portion, centered around the extension of the R-X bond. The electrostatic attraction between this positive region and a lone pair of a Lewis base is termed halogen bonding. The existence and magnitudes of such positive potentials on some covalently bonded halogens, and the characteristic directionality of the interaction, can be explained in terms of the degree of sp hybridization and polarizability of X and the electronegativity of R. Halogen bonding increases in strength in the order Cl &lt; Br &lt; I; fluorine is frequently said to not form halogen bonds, although a notable result of the present study is computational evidence that it does have the capability of doing so, if R is sufficiently electron withdrawing. An increasingly important application of halogen bonding is in the design of new materials (e.g., crystal engineering). In this paper, we present the calculated energies of a series of halogen-bonding interactions that could be the basis for forming linear chains, of types X---X---X--- or X---Y---X---Y---. We focus upon chlorides and bromides, and nitrogen bases. The B3PW91/6-311G(3df,2p) and MP2/6-311++G(3df,2p) procedures were used. We show how the computed electrostatic potentials (B3PW91/6-31G**) can provide guidance in selecting appropriate halide/base pairs.</abstract><cop>Germany</cop><pmid>17361403</pmid><doi>10.1007/s00894-007-0176-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2007-07, Vol.13 (6-7), p.643-650
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_70624039
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Bromides - chemistry
Chlorides - chemistry
Crystallization
Electrons
Fluorides - chemistry
Halogens - chemistry
Models, Chemical
Static Electricity
Thermodynamics
title Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halogen%20bonding%20and%20the%20design%20of%20new%20materials:%20organic%20bromides,%20chlorides%20and%20perhaps%20even%20fluorides%20as%20donors&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Politzer,%20Peter&rft.date=2007-07-01&rft.volume=13&rft.issue=6-7&rft.spage=643&rft.epage=650&rft.pages=643-650&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-007-0176-9&rft_dat=%3Cproquest_cross%3E70624039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70624039&rft_id=info:pmid/17361403&rfr_iscdi=true