Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography
Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small...
Gespeichert in:
Veröffentlicht in: | Journal of synchrotron radiation 2000-05, Vol.7 (3), p.196-201 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 3 |
container_start_page | 196 |
container_title | Journal of synchrotron radiation |
container_volume | 7 |
creator | Baruchel, José Cloetens, Peter Härtwig, Jürgen Ludwig, Wolfgang Mancini, Lucia Pernot, Petra Schlenker, Michel |
description | Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample (`effective divergence' ≃ microradians). When using the `propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the `edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro‐heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three‐dimensional density mapping of the sample (`holotomography'). The combination of diffraction topography and phase‐contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination |
doi_str_mv | 10.1107/S0909049500002995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_70622567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70622567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4930-8540a5091e43c97435098dd08f6bcc4d6bae493aa68cbb8feaea942ccf059fa03</originalsourceid><addsrcrecordid>eNqFUEFLwzAYDaI4nf4AL9KTJ6tf2iZtvMnQbW6osIkTDyFN0zXarTPp0P57Mzam4MEE8j0e7z2-PIROMFxgDPHlCJi7ESPgTsAY2UEHmAL4JI7J7i_cQofWvgFgGgfhPmphSoFhRg7Q62MhrPL0TEz1fOot7eot9LQoG09WhTJqXnsT34jGXnlGZLqaGrEomnOvrmZbnOk8N0LWupo7frHhj9BeLkqrjjezjZ5ub8adnj986PY710NfRiwEPyERCOL2UVEoWRyFDidZBklOUymjjKZCOaEQNJFpmuRKKMGiQMocCMsFhG10ts5dmOpjqWzNZ9pKVZZirqql5THQICA0dkK8FkpTWWtUzhfG_dw0HANfNcr_NOo8p5vwZTpT2Y9jU6ETJGvBpy5V838ivxu99PrgSGf111Zta_W1tQrzzt22MeHP912OB-PRkNIBn4TfvPeRgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70622567</pqid></control><display><type>article</type><title>Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography</title><source>Wiley Online Library Open Access</source><creator>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Ludwig, Wolfgang ; Mancini, Lucia ; Pernot, Petra ; Schlenker, Michel</creator><creatorcontrib>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Ludwig, Wolfgang ; Mancini, Lucia ; Pernot, Petra ; Schlenker, Michel</creatorcontrib><description>Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample (`effective divergence' ≃ microradians). When using the `propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the `edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro‐heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three‐dimensional density mapping of the sample (`holotomography'). The combination of diffraction topography and phase‐contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S0909049500002995</identifier><identifier>PMID: 16609195</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Munksgaard International Publishers</publisher><subject>diffraction topography ; holotomography ; phase-sensitive imaging ; tomography ; X-ray coherence</subject><ispartof>Journal of synchrotron radiation, 2000-05, Vol.7 (3), p.196-201</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4930-8540a5091e43c97435098dd08f6bcc4d6bae493aa68cbb8feaea942ccf059fa03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0909049500002995$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0909049500002995$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3973,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0909049500002995$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16609195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baruchel, José</creatorcontrib><creatorcontrib>Cloetens, Peter</creatorcontrib><creatorcontrib>Härtwig, Jürgen</creatorcontrib><creatorcontrib>Ludwig, Wolfgang</creatorcontrib><creatorcontrib>Mancini, Lucia</creatorcontrib><creatorcontrib>Pernot, Petra</creatorcontrib><creatorcontrib>Schlenker, Michel</creatorcontrib><title>Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography</title><title>Journal of synchrotron radiation</title><addtitle>J. Synchrotron Rad</addtitle><description>Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample (`effective divergence' ≃ microradians). When using the `propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the `edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro‐heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three‐dimensional density mapping of the sample (`holotomography'). The combination of diffraction topography and phase‐contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination</description><subject>diffraction topography</subject><subject>holotomography</subject><subject>phase-sensitive imaging</subject><subject>tomography</subject><subject>X-ray coherence</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFUEFLwzAYDaI4nf4AL9KTJ6tf2iZtvMnQbW6osIkTDyFN0zXarTPp0P57Mzam4MEE8j0e7z2-PIROMFxgDPHlCJi7ESPgTsAY2UEHmAL4JI7J7i_cQofWvgFgGgfhPmphSoFhRg7Q62MhrPL0TEz1fOot7eot9LQoG09WhTJqXnsT34jGXnlGZLqaGrEomnOvrmZbnOk8N0LWupo7frHhj9BeLkqrjjezjZ5ub8adnj986PY710NfRiwEPyERCOL2UVEoWRyFDidZBklOUymjjKZCOaEQNJFpmuRKKMGiQMocCMsFhG10ts5dmOpjqWzNZ9pKVZZirqql5THQICA0dkK8FkpTWWtUzhfG_dw0HANfNcr_NOo8p5vwZTpT2Y9jU6ETJGvBpy5V838ivxu99PrgSGf111Zta_W1tQrzzt22MeHP912OB-PRkNIBn4TfvPeRgw</recordid><startdate>200005</startdate><enddate>200005</enddate><creator>Baruchel, José</creator><creator>Cloetens, Peter</creator><creator>Härtwig, Jürgen</creator><creator>Ludwig, Wolfgang</creator><creator>Mancini, Lucia</creator><creator>Pernot, Petra</creator><creator>Schlenker, Michel</creator><general>Munksgaard International Publishers</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200005</creationdate><title>Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography</title><author>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Ludwig, Wolfgang ; Mancini, Lucia ; Pernot, Petra ; Schlenker, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4930-8540a5091e43c97435098dd08f6bcc4d6bae493aa68cbb8feaea942ccf059fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>diffraction topography</topic><topic>holotomography</topic><topic>phase-sensitive imaging</topic><topic>tomography</topic><topic>X-ray coherence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baruchel, José</creatorcontrib><creatorcontrib>Cloetens, Peter</creatorcontrib><creatorcontrib>Härtwig, Jürgen</creatorcontrib><creatorcontrib>Ludwig, Wolfgang</creatorcontrib><creatorcontrib>Mancini, Lucia</creatorcontrib><creatorcontrib>Pernot, Petra</creatorcontrib><creatorcontrib>Schlenker, Michel</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baruchel, José</au><au>Cloetens, Peter</au><au>Härtwig, Jürgen</au><au>Ludwig, Wolfgang</au><au>Mancini, Lucia</au><au>Pernot, Petra</au><au>Schlenker, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J. Synchrotron Rad</addtitle><date>2000-05</date><risdate>2000</risdate><volume>7</volume><issue>3</issue><spage>196</spage><epage>201</epage><pages>196-201</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample (`effective divergence' ≃ microradians). When using the `propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the `edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro‐heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three‐dimensional density mapping of the sample (`holotomography'). The combination of diffraction topography and phase‐contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Munksgaard International Publishers</pub><pmid>16609195</pmid><doi>10.1107/S0909049500002995</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1600-5775 |
ispartof | Journal of synchrotron radiation, 2000-05, Vol.7 (3), p.196-201 |
issn | 1600-5775 0909-0495 1600-5775 |
language | eng |
recordid | cdi_proquest_miscellaneous_70622567 |
source | Wiley Online Library Open Access |
subjects | diffraction topography holotomography phase-sensitive imaging tomography X-ray coherence |
title | Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20imaging%20using%20highly%20coherent%20X-rays:%20radiography,%20tomography,%20diffraction%20topography&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Baruchel,%20Jos%C3%A9&rft.date=2000-05&rft.volume=7&rft.issue=3&rft.spage=196&rft.epage=201&rft.pages=196-201&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S0909049500002995&rft_dat=%3Cproquest_24P%3E70622567%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70622567&rft_id=info:pmid/16609195&rfr_iscdi=true |