Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography

Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2000-05, Vol.7 (3), p.196-201
Hauptverfasser: Baruchel, José, Cloetens, Peter, Härtwig, Jürgen, Ludwig, Wolfgang, Mancini, Lucia, Pernot, Petra, Schlenker, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 3
container_start_page 196
container_title Journal of synchrotron radiation
container_volume 7
creator Baruchel, José
Cloetens, Peter
Härtwig, Jürgen
Ludwig, Wolfgang
Mancini, Lucia
Pernot, Petra
Schlenker, Michel
description Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample (`effective divergence' ≃ microradians). When using the `propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the `edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro‐heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three‐dimensional density mapping of the sample (`holotomography'). The combination of diffraction topography and phase‐contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination
doi_str_mv 10.1107/S0909049500002995
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_70622567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70622567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4930-8540a5091e43c97435098dd08f6bcc4d6bae493aa68cbb8feaea942ccf059fa03</originalsourceid><addsrcrecordid>eNqFUEFLwzAYDaI4nf4AL9KTJ6tf2iZtvMnQbW6osIkTDyFN0zXarTPp0P57Mzam4MEE8j0e7z2-PIROMFxgDPHlCJi7ESPgTsAY2UEHmAL4JI7J7i_cQofWvgFgGgfhPmphSoFhRg7Q62MhrPL0TEz1fOot7eot9LQoG09WhTJqXnsT34jGXnlGZLqaGrEomnOvrmZbnOk8N0LWupo7frHhj9BeLkqrjjezjZ5ub8adnj986PY710NfRiwEPyERCOL2UVEoWRyFDidZBklOUymjjKZCOaEQNJFpmuRKKMGiQMocCMsFhG10ts5dmOpjqWzNZ9pKVZZirqql5THQICA0dkK8FkpTWWtUzhfG_dw0HANfNcr_NOo8p5vwZTpT2Y9jU6ETJGvBpy5V838ivxu99PrgSGf111Zta_W1tQrzzt22MeHP912OB-PRkNIBn4TfvPeRgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70622567</pqid></control><display><type>article</type><title>Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography</title><source>Wiley Online Library Open Access</source><creator>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Ludwig, Wolfgang ; Mancini, Lucia ; Pernot, Petra ; Schlenker, Michel</creator><creatorcontrib>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Ludwig, Wolfgang ; Mancini, Lucia ; Pernot, Petra ; Schlenker, Michel</creatorcontrib><description>Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample (`effective divergence' ≃ microradians). When using the `propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the `edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro‐heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three‐dimensional density mapping of the sample (`holotomography'). The combination of diffraction topography and phase‐contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S0909049500002995</identifier><identifier>PMID: 16609195</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Munksgaard International Publishers</publisher><subject>diffraction topography ; holotomography ; phase-sensitive imaging ; tomography ; X-ray coherence</subject><ispartof>Journal of synchrotron radiation, 2000-05, Vol.7 (3), p.196-201</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4930-8540a5091e43c97435098dd08f6bcc4d6bae493aa68cbb8feaea942ccf059fa03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0909049500002995$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0909049500002995$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3973,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0909049500002995$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16609195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baruchel, José</creatorcontrib><creatorcontrib>Cloetens, Peter</creatorcontrib><creatorcontrib>Härtwig, Jürgen</creatorcontrib><creatorcontrib>Ludwig, Wolfgang</creatorcontrib><creatorcontrib>Mancini, Lucia</creatorcontrib><creatorcontrib>Pernot, Petra</creatorcontrib><creatorcontrib>Schlenker, Michel</creatorcontrib><title>Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography</title><title>Journal of synchrotron radiation</title><addtitle>J. Synchrotron Rad</addtitle><description>Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample (`effective divergence' ≃ microradians). When using the `propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the `edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro‐heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three‐dimensional density mapping of the sample (`holotomography'). The combination of diffraction topography and phase‐contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination</description><subject>diffraction topography</subject><subject>holotomography</subject><subject>phase-sensitive imaging</subject><subject>tomography</subject><subject>X-ray coherence</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFUEFLwzAYDaI4nf4AL9KTJ6tf2iZtvMnQbW6osIkTDyFN0zXarTPp0P57Mzam4MEE8j0e7z2-PIROMFxgDPHlCJi7ESPgTsAY2UEHmAL4JI7J7i_cQofWvgFgGgfhPmphSoFhRg7Q62MhrPL0TEz1fOot7eot9LQoG09WhTJqXnsT34jGXnlGZLqaGrEomnOvrmZbnOk8N0LWupo7frHhj9BeLkqrjjezjZ5ub8adnj986PY710NfRiwEPyERCOL2UVEoWRyFDidZBklOUymjjKZCOaEQNJFpmuRKKMGiQMocCMsFhG10ts5dmOpjqWzNZ9pKVZZirqql5THQICA0dkK8FkpTWWtUzhfG_dw0HANfNcr_NOo8p5vwZTpT2Y9jU6ETJGvBpy5V838ivxu99PrgSGf111Zta_W1tQrzzt22MeHP912OB-PRkNIBn4TfvPeRgw</recordid><startdate>200005</startdate><enddate>200005</enddate><creator>Baruchel, José</creator><creator>Cloetens, Peter</creator><creator>Härtwig, Jürgen</creator><creator>Ludwig, Wolfgang</creator><creator>Mancini, Lucia</creator><creator>Pernot, Petra</creator><creator>Schlenker, Michel</creator><general>Munksgaard International Publishers</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200005</creationdate><title>Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography</title><author>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Ludwig, Wolfgang ; Mancini, Lucia ; Pernot, Petra ; Schlenker, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4930-8540a5091e43c97435098dd08f6bcc4d6bae493aa68cbb8feaea942ccf059fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>diffraction topography</topic><topic>holotomography</topic><topic>phase-sensitive imaging</topic><topic>tomography</topic><topic>X-ray coherence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baruchel, José</creatorcontrib><creatorcontrib>Cloetens, Peter</creatorcontrib><creatorcontrib>Härtwig, Jürgen</creatorcontrib><creatorcontrib>Ludwig, Wolfgang</creatorcontrib><creatorcontrib>Mancini, Lucia</creatorcontrib><creatorcontrib>Pernot, Petra</creatorcontrib><creatorcontrib>Schlenker, Michel</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baruchel, José</au><au>Cloetens, Peter</au><au>Härtwig, Jürgen</au><au>Ludwig, Wolfgang</au><au>Mancini, Lucia</au><au>Pernot, Petra</au><au>Schlenker, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J. Synchrotron Rad</addtitle><date>2000-05</date><risdate>2000</risdate><volume>7</volume><issue>3</issue><spage>196</spage><epage>201</epage><pages>196-201</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Several hard X‐rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the `long' (145 m) ID19 `imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample (`effective divergence' ≃ microradians). When using the `propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the `edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro‐heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three‐dimensional density mapping of the sample (`holotomography'). The combination of diffraction topography and phase‐contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Munksgaard International Publishers</pub><pmid>16609195</pmid><doi>10.1107/S0909049500002995</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2000-05, Vol.7 (3), p.196-201
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_proquest_miscellaneous_70622567
source Wiley Online Library Open Access
subjects diffraction topography
holotomography
phase-sensitive imaging
tomography
X-ray coherence
title Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20imaging%20using%20highly%20coherent%20X-rays:%20radiography,%20tomography,%20diffraction%20topography&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Baruchel,%20Jos%C3%A9&rft.date=2000-05&rft.volume=7&rft.issue=3&rft.spage=196&rft.epage=201&rft.pages=196-201&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S0909049500002995&rft_dat=%3Cproquest_24P%3E70622567%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70622567&rft_id=info:pmid/16609195&rfr_iscdi=true