Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles

Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2007-06, Vol.129 (24), p.7647-7656
Hauptverfasser: Zhao, Jing, Jensen, Lasse, Sung, Jiha, Zou, Shengli, Schatz, George C, Van Duyne, Richard P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7656
container_issue 24
container_start_page 7647
container_title Journal of the American Chemical Society
container_volume 129
creator Zhao, Jing
Jensen, Lasse
Sung, Jiha
Zou, Shengli
Schatz, George C
Van Duyne, Richard P
description Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (λmax,bare). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning λmax,bare through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.
doi_str_mv 10.1021/ja0707106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70619529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70619529</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-6b3466b369d279b37aef665249d7bc397e879fac683016f57c392478f8cbe6493</originalsourceid><addsrcrecordid>eNptkMFO3DAQhq0KVLbQAy-AfAGph1DbSezkuKwoi3YpiN2erYkzUbNN7MVOKnh7jHYFFy4z8898MyP9hJxydsmZ4D83wBRTnMkvZMJzwZKcC3lAJowxkahCpkfkWwibKDNR8K_kiKtccF6oCYFbO6AHM7TOUtfQhw5CH0uwNb1zHZqxA08fMTgL1mCgjYvyr6uhby1SeUOndXC-wprGrVXb_UdPf4N1W_BDazoMJ-SwgS7g930-Jn9-Xa9n82R5f3M7my4TyLgaElmlmYxBlrVQZZUqwEbKXGRlrSqTlgoLVTZgZJEyLptcxZ7IVNEUpkKZlekxudjd3Xr3NGIYdN8Gg10HFt0YtGKSl7l4A3_sQONdCB4bvfVtD_5Fc6bf_NTvfkb2bH90rHqsP8i9gRFIdkAbBnx-n4P_p6VKVa7XDys9u1o8stl8oVeRP9_xYILeuNHb6Mknj18BisiKIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70619529</pqid></control><display><type>article</type><title>Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhao, Jing ; Jensen, Lasse ; Sung, Jiha ; Zou, Shengli ; Schatz, George C ; Van Duyne, Richard P</creator><creatorcontrib>Zhao, Jing ; Jensen, Lasse ; Sung, Jiha ; Zou, Shengli ; Schatz, George C ; Van Duyne, Richard P</creatorcontrib><description>Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (λmax,bare). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning λmax,bare through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0707106</identifier><identifier>PMID: 17521187</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer Simulation ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Nanoparticles - chemistry ; Phenols - chemistry ; Rhodamines - chemistry ; Silver - chemistry ; Sulfhydryl Compounds - chemistry ; Surface Plasmon Resonance</subject><ispartof>Journal of the American Chemical Society, 2007-06, Vol.129 (24), p.7647-7656</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-6b3466b369d279b37aef665249d7bc397e879fac683016f57c392478f8cbe6493</citedby><cites>FETCH-LOGICAL-a417t-6b3466b369d279b37aef665249d7bc397e879fac683016f57c392478f8cbe6493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja0707106$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja0707106$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17521187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Jensen, Lasse</creatorcontrib><creatorcontrib>Sung, Jiha</creatorcontrib><creatorcontrib>Zou, Shengli</creatorcontrib><creatorcontrib>Schatz, George C</creatorcontrib><creatorcontrib>Van Duyne, Richard P</creatorcontrib><title>Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (λmax,bare). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning λmax,bare through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.</description><subject>Computer Simulation</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Nanoparticles - chemistry</subject><subject>Phenols - chemistry</subject><subject>Rhodamines - chemistry</subject><subject>Silver - chemistry</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Surface Plasmon Resonance</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMFO3DAQhq0KVLbQAy-AfAGph1DbSezkuKwoi3YpiN2erYkzUbNN7MVOKnh7jHYFFy4z8898MyP9hJxydsmZ4D83wBRTnMkvZMJzwZKcC3lAJowxkahCpkfkWwibKDNR8K_kiKtccF6oCYFbO6AHM7TOUtfQhw5CH0uwNb1zHZqxA08fMTgL1mCgjYvyr6uhby1SeUOndXC-wprGrVXb_UdPf4N1W_BDazoMJ-SwgS7g930-Jn9-Xa9n82R5f3M7my4TyLgaElmlmYxBlrVQZZUqwEbKXGRlrSqTlgoLVTZgZJEyLptcxZ7IVNEUpkKZlekxudjd3Xr3NGIYdN8Gg10HFt0YtGKSl7l4A3_sQONdCB4bvfVtD_5Fc6bf_NTvfkb2bH90rHqsP8i9gRFIdkAbBnx-n4P_p6VKVa7XDys9u1o8stl8oVeRP9_xYILeuNHb6Mknj18BisiKIA</recordid><startdate>20070620</startdate><enddate>20070620</enddate><creator>Zhao, Jing</creator><creator>Jensen, Lasse</creator><creator>Sung, Jiha</creator><creator>Zou, Shengli</creator><creator>Schatz, George C</creator><creator>Van Duyne, Richard P</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070620</creationdate><title>Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles</title><author>Zhao, Jing ; Jensen, Lasse ; Sung, Jiha ; Zou, Shengli ; Schatz, George C ; Van Duyne, Richard P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-6b3466b369d279b37aef665249d7bc397e879fac683016f57c392478f8cbe6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer Simulation</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Nanoparticles - chemistry</topic><topic>Phenols - chemistry</topic><topic>Rhodamines - chemistry</topic><topic>Silver - chemistry</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Jensen, Lasse</creatorcontrib><creatorcontrib>Sung, Jiha</creatorcontrib><creatorcontrib>Zou, Shengli</creatorcontrib><creatorcontrib>Schatz, George C</creatorcontrib><creatorcontrib>Van Duyne, Richard P</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jing</au><au>Jensen, Lasse</au><au>Sung, Jiha</au><au>Zou, Shengli</au><au>Schatz, George C</au><au>Van Duyne, Richard P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2007-06-20</date><risdate>2007</risdate><volume>129</volume><issue>24</issue><spage>7647</spage><epage>7656</epage><pages>7647-7656</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (λmax,bare). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning λmax,bare through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17521187</pmid><doi>10.1021/ja0707106</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2007-06, Vol.129 (24), p.7647-7656
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_70619529
source ACS Publications; MEDLINE
subjects Computer Simulation
Models, Chemical
Models, Molecular
Molecular Structure
Nanoparticles - chemistry
Phenols - chemistry
Rhodamines - chemistry
Silver - chemistry
Sulfhydryl Compounds - chemistry
Surface Plasmon Resonance
title Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20Plasmon%20and%20Molecular%20Resonances%20for%20Rhodamine%206G%20Adsorbed%20on%20Silver%20Nanoparticles&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhao,%20Jing&rft.date=2007-06-20&rft.volume=129&rft.issue=24&rft.spage=7647&rft.epage=7656&rft.pages=7647-7656&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja0707106&rft_dat=%3Cproquest_cross%3E70619529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70619529&rft_id=info:pmid/17521187&rfr_iscdi=true