Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles
Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2007-06, Vol.129 (24), p.7647-7656 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7656 |
---|---|
container_issue | 24 |
container_start_page | 7647 |
container_title | Journal of the American Chemical Society |
container_volume | 129 |
creator | Zhao, Jing Jensen, Lasse Sung, Jiha Zou, Shengli Schatz, George C Van Duyne, Richard P |
description | Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (λmax,bare). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning λmax,bare through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate. |
doi_str_mv | 10.1021/ja0707106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70619529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70619529</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-6b3466b369d279b37aef665249d7bc397e879fac683016f57c392478f8cbe6493</originalsourceid><addsrcrecordid>eNptkMFO3DAQhq0KVLbQAy-AfAGph1DbSezkuKwoi3YpiN2erYkzUbNN7MVOKnh7jHYFFy4z8898MyP9hJxydsmZ4D83wBRTnMkvZMJzwZKcC3lAJowxkahCpkfkWwibKDNR8K_kiKtccF6oCYFbO6AHM7TOUtfQhw5CH0uwNb1zHZqxA08fMTgL1mCgjYvyr6uhby1SeUOndXC-wprGrVXb_UdPf4N1W_BDazoMJ-SwgS7g930-Jn9-Xa9n82R5f3M7my4TyLgaElmlmYxBlrVQZZUqwEbKXGRlrSqTlgoLVTZgZJEyLptcxZ7IVNEUpkKZlekxudjd3Xr3NGIYdN8Gg10HFt0YtGKSl7l4A3_sQONdCB4bvfVtD_5Fc6bf_NTvfkb2bH90rHqsP8i9gRFIdkAbBnx-n4P_p6VKVa7XDys9u1o8stl8oVeRP9_xYILeuNHb6Mknj18BisiKIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70619529</pqid></control><display><type>article</type><title>Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhao, Jing ; Jensen, Lasse ; Sung, Jiha ; Zou, Shengli ; Schatz, George C ; Van Duyne, Richard P</creator><creatorcontrib>Zhao, Jing ; Jensen, Lasse ; Sung, Jiha ; Zou, Shengli ; Schatz, George C ; Van Duyne, Richard P</creatorcontrib><description>Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (λmax,bare). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning λmax,bare through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0707106</identifier><identifier>PMID: 17521187</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer Simulation ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Nanoparticles - chemistry ; Phenols - chemistry ; Rhodamines - chemistry ; Silver - chemistry ; Sulfhydryl Compounds - chemistry ; Surface Plasmon Resonance</subject><ispartof>Journal of the American Chemical Society, 2007-06, Vol.129 (24), p.7647-7656</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-6b3466b369d279b37aef665249d7bc397e879fac683016f57c392478f8cbe6493</citedby><cites>FETCH-LOGICAL-a417t-6b3466b369d279b37aef665249d7bc397e879fac683016f57c392478f8cbe6493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja0707106$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja0707106$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17521187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Jensen, Lasse</creatorcontrib><creatorcontrib>Sung, Jiha</creatorcontrib><creatorcontrib>Zou, Shengli</creatorcontrib><creatorcontrib>Schatz, George C</creatorcontrib><creatorcontrib>Van Duyne, Richard P</creatorcontrib><title>Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (λmax,bare). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning λmax,bare through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.</description><subject>Computer Simulation</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Nanoparticles - chemistry</subject><subject>Phenols - chemistry</subject><subject>Rhodamines - chemistry</subject><subject>Silver - chemistry</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Surface Plasmon Resonance</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMFO3DAQhq0KVLbQAy-AfAGph1DbSezkuKwoi3YpiN2erYkzUbNN7MVOKnh7jHYFFy4z8898MyP9hJxydsmZ4D83wBRTnMkvZMJzwZKcC3lAJowxkahCpkfkWwibKDNR8K_kiKtccF6oCYFbO6AHM7TOUtfQhw5CH0uwNb1zHZqxA08fMTgL1mCgjYvyr6uhby1SeUOndXC-wprGrVXb_UdPf4N1W_BDazoMJ-SwgS7g930-Jn9-Xa9n82R5f3M7my4TyLgaElmlmYxBlrVQZZUqwEbKXGRlrSqTlgoLVTZgZJEyLptcxZ7IVNEUpkKZlekxudjd3Xr3NGIYdN8Gg10HFt0YtGKSl7l4A3_sQONdCB4bvfVtD_5Fc6bf_NTvfkb2bH90rHqsP8i9gRFIdkAbBnx-n4P_p6VKVa7XDys9u1o8stl8oVeRP9_xYILeuNHb6Mknj18BisiKIA</recordid><startdate>20070620</startdate><enddate>20070620</enddate><creator>Zhao, Jing</creator><creator>Jensen, Lasse</creator><creator>Sung, Jiha</creator><creator>Zou, Shengli</creator><creator>Schatz, George C</creator><creator>Van Duyne, Richard P</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070620</creationdate><title>Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles</title><author>Zhao, Jing ; Jensen, Lasse ; Sung, Jiha ; Zou, Shengli ; Schatz, George C ; Van Duyne, Richard P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-6b3466b369d279b37aef665249d7bc397e879fac683016f57c392478f8cbe6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer Simulation</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Nanoparticles - chemistry</topic><topic>Phenols - chemistry</topic><topic>Rhodamines - chemistry</topic><topic>Silver - chemistry</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Jensen, Lasse</creatorcontrib><creatorcontrib>Sung, Jiha</creatorcontrib><creatorcontrib>Zou, Shengli</creatorcontrib><creatorcontrib>Schatz, George C</creatorcontrib><creatorcontrib>Van Duyne, Richard P</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jing</au><au>Jensen, Lasse</au><au>Sung, Jiha</au><au>Zou, Shengli</au><au>Schatz, George C</au><au>Van Duyne, Richard P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2007-06-20</date><risdate>2007</risdate><volume>129</volume><issue>24</issue><spage>7647</spage><epage>7656</epage><pages>7647-7656</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (λmax,bare). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning λmax,bare through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17521187</pmid><doi>10.1021/ja0707106</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2007-06, Vol.129 (24), p.7647-7656 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_70619529 |
source | ACS Publications; MEDLINE |
subjects | Computer Simulation Models, Chemical Models, Molecular Molecular Structure Nanoparticles - chemistry Phenols - chemistry Rhodamines - chemistry Silver - chemistry Sulfhydryl Compounds - chemistry Surface Plasmon Resonance |
title | Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20Plasmon%20and%20Molecular%20Resonances%20for%20Rhodamine%206G%20Adsorbed%20on%20Silver%20Nanoparticles&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhao,%20Jing&rft.date=2007-06-20&rft.volume=129&rft.issue=24&rft.spage=7647&rft.epage=7656&rft.pages=7647-7656&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja0707106&rft_dat=%3Cproquest_cross%3E70619529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70619529&rft_id=info:pmid/17521187&rfr_iscdi=true |