Enantioselective Oxidation of trans-4-Hydroxy-2-Nonenal Is Aldehyde Dehydrogenase Isozyme and Mg2+ Dependent

trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic α,β-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2007-06, Vol.20 (6), p.887-895
Hauptverfasser: Brichac, Jiri, Ho, Kwok Ki, Honzatko, Ales, Wang, Rongying, Lu, Xiaoning, Weiner, Henry, Picklo, Matthew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 895
container_issue 6
container_start_page 887
container_title Chemical research in toxicology
container_volume 20
creator Brichac, Jiri
Ho, Kwok Ki
Honzatko, Ales
Wang, Rongying
Lu, Xiaoning
Weiner, Henry
Picklo, Matthew J
description trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic α,β-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE is enantioselectively oxidized to HNEA. In this work, we further elucidated the basis of the enantioselective oxidation of HNE by brain mitochondria. Our results showed that (R)-HNE is oxidized enantioselectively by brain mitochondrial lysates with retention of stereoconfiguration of the C4 hydroxyl group. Purified rat ALDH5A enantioselectively oxidized (R)-HNE, whereas rat ALDH2 was not enantioselective. Kinetic data using (R)-HNE, (S)-HNE, and trans-2-nonenal in combination with computer-based modeling of ALDH5A suggest that the selectivity of (R)-HNE oxidation by ALDH5A is the result of the carbonyl carbon of (R)-HNE forming a more favorable Bürgi−Duntiz angle with the active site cysteine 293. The presence of Mg2+ ions altered the enantioselectivity of ALDH5A and ALDH2. Mg2+ ions suppressed (R)-HNE oxidation by ALDH5A to a greater extent than that of (S)-HNE. However, Mg2+ ions stimulated the enantioselective oxidation of (R)-HNE by ALDH2 while suppressing (S)-HNE oxidation. These results demonstrate that enantioselective utilization of substrates, including HNE, by ALDHs is dependent upon the ALDH isozyme and the presence of Mg 2+ ions.
doi_str_mv 10.1021/tx7000509
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70610731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70610731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a207t-39d17e4242b0baf61f9806eee9ce9f601c5034ebc80b0c2c8a368da2584ff57a3</originalsourceid><addsrcrecordid>eNo9kctOwzAQRS0EglJY8AMoG9ggw9h5OFmi8mhRoUgUwc5y4gkEUrvEKWr4ely1sLrSnKNZ3EvIEYNzBpxdtEsBADFkW6THYg40BgbbpAdpFlLO09c9su_cBwDzutgle0xEqVd4j9TXRpm2sg5rLNrqG4PJstLKX0xgy6BtlHE0osNON3bZUU4frEGj6mDkgsta43unMbhaRWPfPHDoif3pZhgoo4P7N37m8RyNRtMekJ1S1Q4PN9knzzfX08GQjie3o8HlmCoOoqVhppnAiEc8h1yVCSuzFBJEzArMygRYEUMYYV6kkEPBi1SFSaoVj9OoLGOhwj45Xf-dN_Zrga6Vs8oVWNfKoF04KSBhIELmxeONuMhnqOW8qWaq6eRfP16ga6FyLS7_uWo-ZSJCEcvp45Pk05cBh7tbOfb-ydpXhZMfdtH4qpxkIFc7yf-dwl_LfoGC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70610731</pqid></control><display><type>article</type><title>Enantioselective Oxidation of trans-4-Hydroxy-2-Nonenal Is Aldehyde Dehydrogenase Isozyme and Mg2+ Dependent</title><source>MEDLINE</source><source>ACS Publications</source><creator>Brichac, Jiri ; Ho, Kwok Ki ; Honzatko, Ales ; Wang, Rongying ; Lu, Xiaoning ; Weiner, Henry ; Picklo, Matthew J</creator><creatorcontrib>Brichac, Jiri ; Ho, Kwok Ki ; Honzatko, Ales ; Wang, Rongying ; Lu, Xiaoning ; Weiner, Henry ; Picklo, Matthew J</creatorcontrib><description>trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic α,β-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE is enantioselectively oxidized to HNEA. In this work, we further elucidated the basis of the enantioselective oxidation of HNE by brain mitochondria. Our results showed that (R)-HNE is oxidized enantioselectively by brain mitochondrial lysates with retention of stereoconfiguration of the C4 hydroxyl group. Purified rat ALDH5A enantioselectively oxidized (R)-HNE, whereas rat ALDH2 was not enantioselective. Kinetic data using (R)-HNE, (S)-HNE, and trans-2-nonenal in combination with computer-based modeling of ALDH5A suggest that the selectivity of (R)-HNE oxidation by ALDH5A is the result of the carbonyl carbon of (R)-HNE forming a more favorable Bürgi−Duntiz angle with the active site cysteine 293. The presence of Mg2+ ions altered the enantioselectivity of ALDH5A and ALDH2. Mg2+ ions suppressed (R)-HNE oxidation by ALDH5A to a greater extent than that of (S)-HNE. However, Mg2+ ions stimulated the enantioselective oxidation of (R)-HNE by ALDH2 while suppressing (S)-HNE oxidation. These results demonstrate that enantioselective utilization of substrates, including HNE, by ALDHs is dependent upon the ALDH isozyme and the presence of Mg 2+ ions.</description><identifier>ISSN: 0893-228X</identifier><identifier>EISSN: 1520-5010</identifier><identifier>DOI: 10.1021/tx7000509</identifier><identifier>PMID: 17480102</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetaldehyde - chemistry ; Acetaldehyde - metabolism ; Aldehyde Dehydrogenase - chemistry ; Aldehyde Dehydrogenase - metabolism ; Aldehydes - chemistry ; Aldehydes - metabolism ; Animals ; Catalysis - drug effects ; Cations, Divalent - chemistry ; Cations, Divalent - metabolism ; Chromatography, High Pressure Liquid ; Dose-Response Relationship, Drug ; Electrophoresis, Polyacrylamide Gel ; gamma-Aminobutyric Acid - analogs &amp; derivatives ; gamma-Aminobutyric Acid - chemistry ; gamma-Aminobutyric Acid - metabolism ; Isoenzymes - chemistry ; Isoenzymes - metabolism ; Kinetics ; Magnesium - chemistry ; Magnesium - pharmacology ; Models, Molecular ; NAD - chemistry ; NAD - metabolism ; Oxidation-Reduction ; Protein Conformation ; Rats ; Rats, Sprague-Dawley ; Stereoisomerism</subject><ispartof>Chemical research in toxicology, 2007-06, Vol.20 (6), p.887-895</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/tx7000509$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/tx7000509$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17480102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brichac, Jiri</creatorcontrib><creatorcontrib>Ho, Kwok Ki</creatorcontrib><creatorcontrib>Honzatko, Ales</creatorcontrib><creatorcontrib>Wang, Rongying</creatorcontrib><creatorcontrib>Lu, Xiaoning</creatorcontrib><creatorcontrib>Weiner, Henry</creatorcontrib><creatorcontrib>Picklo, Matthew J</creatorcontrib><title>Enantioselective Oxidation of trans-4-Hydroxy-2-Nonenal Is Aldehyde Dehydrogenase Isozyme and Mg2+ Dependent</title><title>Chemical research in toxicology</title><addtitle>Chem. Res. Toxicol</addtitle><description>trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic α,β-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE is enantioselectively oxidized to HNEA. In this work, we further elucidated the basis of the enantioselective oxidation of HNE by brain mitochondria. Our results showed that (R)-HNE is oxidized enantioselectively by brain mitochondrial lysates with retention of stereoconfiguration of the C4 hydroxyl group. Purified rat ALDH5A enantioselectively oxidized (R)-HNE, whereas rat ALDH2 was not enantioselective. Kinetic data using (R)-HNE, (S)-HNE, and trans-2-nonenal in combination with computer-based modeling of ALDH5A suggest that the selectivity of (R)-HNE oxidation by ALDH5A is the result of the carbonyl carbon of (R)-HNE forming a more favorable Bürgi−Duntiz angle with the active site cysteine 293. The presence of Mg2+ ions altered the enantioselectivity of ALDH5A and ALDH2. Mg2+ ions suppressed (R)-HNE oxidation by ALDH5A to a greater extent than that of (S)-HNE. However, Mg2+ ions stimulated the enantioselective oxidation of (R)-HNE by ALDH2 while suppressing (S)-HNE oxidation. These results demonstrate that enantioselective utilization of substrates, including HNE, by ALDHs is dependent upon the ALDH isozyme and the presence of Mg 2+ ions.</description><subject>Acetaldehyde - chemistry</subject><subject>Acetaldehyde - metabolism</subject><subject>Aldehyde Dehydrogenase - chemistry</subject><subject>Aldehyde Dehydrogenase - metabolism</subject><subject>Aldehydes - chemistry</subject><subject>Aldehydes - metabolism</subject><subject>Animals</subject><subject>Catalysis - drug effects</subject><subject>Cations, Divalent - chemistry</subject><subject>Cations, Divalent - metabolism</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>gamma-Aminobutyric Acid - analogs &amp; derivatives</subject><subject>gamma-Aminobutyric Acid - chemistry</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - metabolism</subject><subject>Kinetics</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - pharmacology</subject><subject>Models, Molecular</subject><subject>NAD - chemistry</subject><subject>NAD - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Protein Conformation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stereoisomerism</subject><issn>0893-228X</issn><issn>1520-5010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kctOwzAQRS0EglJY8AMoG9ggw9h5OFmi8mhRoUgUwc5y4gkEUrvEKWr4ely1sLrSnKNZ3EvIEYNzBpxdtEsBADFkW6THYg40BgbbpAdpFlLO09c9su_cBwDzutgle0xEqVd4j9TXRpm2sg5rLNrqG4PJstLKX0xgy6BtlHE0osNON3bZUU4frEGj6mDkgsta43unMbhaRWPfPHDoif3pZhgoo4P7N37m8RyNRtMekJ1S1Q4PN9knzzfX08GQjie3o8HlmCoOoqVhppnAiEc8h1yVCSuzFBJEzArMygRYEUMYYV6kkEPBi1SFSaoVj9OoLGOhwj45Xf-dN_Zrga6Vs8oVWNfKoF04KSBhIELmxeONuMhnqOW8qWaq6eRfP16ga6FyLS7_uWo-ZSJCEcvp45Pk05cBh7tbOfb-ydpXhZMfdtH4qpxkIFc7yf-dwl_LfoGC</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Brichac, Jiri</creator><creator>Ho, Kwok Ki</creator><creator>Honzatko, Ales</creator><creator>Wang, Rongying</creator><creator>Lu, Xiaoning</creator><creator>Weiner, Henry</creator><creator>Picklo, Matthew J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20070601</creationdate><title>Enantioselective Oxidation of trans-4-Hydroxy-2-Nonenal Is Aldehyde Dehydrogenase Isozyme and Mg2+ Dependent</title><author>Brichac, Jiri ; Ho, Kwok Ki ; Honzatko, Ales ; Wang, Rongying ; Lu, Xiaoning ; Weiner, Henry ; Picklo, Matthew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a207t-39d17e4242b0baf61f9806eee9ce9f601c5034ebc80b0c2c8a368da2584ff57a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acetaldehyde - chemistry</topic><topic>Acetaldehyde - metabolism</topic><topic>Aldehyde Dehydrogenase - chemistry</topic><topic>Aldehyde Dehydrogenase - metabolism</topic><topic>Aldehydes - chemistry</topic><topic>Aldehydes - metabolism</topic><topic>Animals</topic><topic>Catalysis - drug effects</topic><topic>Cations, Divalent - chemistry</topic><topic>Cations, Divalent - metabolism</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>gamma-Aminobutyric Acid - analogs &amp; derivatives</topic><topic>gamma-Aminobutyric Acid - chemistry</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - metabolism</topic><topic>Kinetics</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - pharmacology</topic><topic>Models, Molecular</topic><topic>NAD - chemistry</topic><topic>NAD - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Protein Conformation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brichac, Jiri</creatorcontrib><creatorcontrib>Ho, Kwok Ki</creatorcontrib><creatorcontrib>Honzatko, Ales</creatorcontrib><creatorcontrib>Wang, Rongying</creatorcontrib><creatorcontrib>Lu, Xiaoning</creatorcontrib><creatorcontrib>Weiner, Henry</creatorcontrib><creatorcontrib>Picklo, Matthew J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical research in toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brichac, Jiri</au><au>Ho, Kwok Ki</au><au>Honzatko, Ales</au><au>Wang, Rongying</au><au>Lu, Xiaoning</au><au>Weiner, Henry</au><au>Picklo, Matthew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enantioselective Oxidation of trans-4-Hydroxy-2-Nonenal Is Aldehyde Dehydrogenase Isozyme and Mg2+ Dependent</atitle><jtitle>Chemical research in toxicology</jtitle><addtitle>Chem. Res. Toxicol</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>20</volume><issue>6</issue><spage>887</spage><epage>895</epage><pages>887-895</pages><issn>0893-228X</issn><eissn>1520-5010</eissn><abstract>trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic α,β-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE is enantioselectively oxidized to HNEA. In this work, we further elucidated the basis of the enantioselective oxidation of HNE by brain mitochondria. Our results showed that (R)-HNE is oxidized enantioselectively by brain mitochondrial lysates with retention of stereoconfiguration of the C4 hydroxyl group. Purified rat ALDH5A enantioselectively oxidized (R)-HNE, whereas rat ALDH2 was not enantioselective. Kinetic data using (R)-HNE, (S)-HNE, and trans-2-nonenal in combination with computer-based modeling of ALDH5A suggest that the selectivity of (R)-HNE oxidation by ALDH5A is the result of the carbonyl carbon of (R)-HNE forming a more favorable Bürgi−Duntiz angle with the active site cysteine 293. The presence of Mg2+ ions altered the enantioselectivity of ALDH5A and ALDH2. Mg2+ ions suppressed (R)-HNE oxidation by ALDH5A to a greater extent than that of (S)-HNE. However, Mg2+ ions stimulated the enantioselective oxidation of (R)-HNE by ALDH2 while suppressing (S)-HNE oxidation. These results demonstrate that enantioselective utilization of substrates, including HNE, by ALDHs is dependent upon the ALDH isozyme and the presence of Mg 2+ ions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17480102</pmid><doi>10.1021/tx7000509</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-228X
ispartof Chemical research in toxicology, 2007-06, Vol.20 (6), p.887-895
issn 0893-228X
1520-5010
language eng
recordid cdi_proquest_miscellaneous_70610731
source MEDLINE; ACS Publications
subjects Acetaldehyde - chemistry
Acetaldehyde - metabolism
Aldehyde Dehydrogenase - chemistry
Aldehyde Dehydrogenase - metabolism
Aldehydes - chemistry
Aldehydes - metabolism
Animals
Catalysis - drug effects
Cations, Divalent - chemistry
Cations, Divalent - metabolism
Chromatography, High Pressure Liquid
Dose-Response Relationship, Drug
Electrophoresis, Polyacrylamide Gel
gamma-Aminobutyric Acid - analogs & derivatives
gamma-Aminobutyric Acid - chemistry
gamma-Aminobutyric Acid - metabolism
Isoenzymes - chemistry
Isoenzymes - metabolism
Kinetics
Magnesium - chemistry
Magnesium - pharmacology
Models, Molecular
NAD - chemistry
NAD - metabolism
Oxidation-Reduction
Protein Conformation
Rats
Rats, Sprague-Dawley
Stereoisomerism
title Enantioselective Oxidation of trans-4-Hydroxy-2-Nonenal Is Aldehyde Dehydrogenase Isozyme and Mg2+ Dependent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enantioselective%20Oxidation%20of%20trans-4-Hydroxy-2-Nonenal%20Is%20Aldehyde%20Dehydrogenase%20Isozyme%20and%20Mg2+%20Dependent&rft.jtitle=Chemical%20research%20in%20toxicology&rft.au=Brichac,%20Jiri&rft.date=2007-06-01&rft.volume=20&rft.issue=6&rft.spage=887&rft.epage=895&rft.pages=887-895&rft.issn=0893-228X&rft.eissn=1520-5010&rft_id=info:doi/10.1021/tx7000509&rft_dat=%3Cproquest_pubme%3E70610731%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70610731&rft_id=info:pmid/17480102&rfr_iscdi=true