Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task

Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders. We compared the contribution of glutamate and dopamine recep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychopharmacologia 2001-01, Vol.153 (3), p.353-364
Hauptverfasser: AULTMAN, Julie M, MOGHADDAM, Bita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue 3
container_start_page 353
container_title Psychopharmacologia
container_volume 153
creator AULTMAN, Julie M
MOGHADDAM, Bita
description Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders. We compared the contribution of glutamate and dopamine receptor subtypes to temporal aspects of working memory using a modified rodent spatial working memory task that incorporates important elements of clinical working memory tasks. A discrete paired-trial variable-delay T-maze task was used. Initial characterization studies indicated that performance on this task is stable at seconds-long retention intervals, is sensitive to retention interval and proactive interference, and is dependent on the integrity of the medial prefrontal cortex. Consistent with clinical findings, low dose amphetamine (0.25 mg/kg) produced a delay-dependent improvement in performance, while higher doses impaired performance at all retention intervals. D1 receptor blockade produced the predicted dose- and delay-dependent impairment. D2 receptor blockade had no effect. Activation of metabotropic glutamate 2/3 (mGluR2/3) receptors, which in the prefrontal cortex inhibits the slow asynchronous phase of glutamate release, also produced a delay-dependent impairment. Low doses of an AMPA/kainate antagonist had effects similar to the mGluR2/3 agonist. In contrast, NMDA receptor antagonist-induced impairment was memory load-insensitive, resulting in chance-level performance at all retention intervals. These findings suggest that activation of NMDA receptors is necessary for the formation of mnemonic encoding while modulatory components involving slow asynchronous release of glutamate and phasic release of dopamine contribute to the active maintenance of information during the delay period.
doi_str_mv 10.1007/s002130000590
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70599354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70599354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-6f95835d706b9ff35c0cbe8d62b92fe0b43327bb5831d0a43a71f287142d189d3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgijuOHr1KQPDWmq_upI-yq6uw4EXPTTqpLNlNJ22Sdpl_4M824w5-XcwlBJ5UUfUi9JyS15QQ-aYQwign7fQjeYB2VHDWMSLZQ7QjhPOO016doSel3ByRUOIxOqOUSSqI2qHvF75UH03FJsWa_bxVn2LByeHrsFW96ApYR4ttWvXiI-AMBtaacsE14QrLmrIOWJcVTP35LycLseK7lG99vMYLLCkf8FaOD41N8NEbHcKhVQrwTTdadbl9ih45HQo8O9179OX9u8_nH7qrT5cfz99edUYIVrvBjb3ivZVkmEfneG-ImUHZgc0jc0BmwTmT89wQtUQLriV1TLVpmaVqtHyPXt3XXXP6ukGp0-KLgRB0hLSVSbY9jrwX_4VUyoEPrc8evfwH3qQtxzbExGlTspdibKq7VyanUjK4ac1-0fkwUTIdk5z-SrL5F6eq27yA_a1P0f3RVpe2T5d1NL78ckoqygj_ASfJpqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117775749</pqid></control><display><type>article</type><title>Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>AULTMAN, Julie M ; MOGHADDAM, Bita</creator><creatorcontrib>AULTMAN, Julie M ; MOGHADDAM, Bita</creatorcontrib><description>Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders. We compared the contribution of glutamate and dopamine receptor subtypes to temporal aspects of working memory using a modified rodent spatial working memory task that incorporates important elements of clinical working memory tasks. A discrete paired-trial variable-delay T-maze task was used. Initial characterization studies indicated that performance on this task is stable at seconds-long retention intervals, is sensitive to retention interval and proactive interference, and is dependent on the integrity of the medial prefrontal cortex. Consistent with clinical findings, low dose amphetamine (0.25 mg/kg) produced a delay-dependent improvement in performance, while higher doses impaired performance at all retention intervals. D1 receptor blockade produced the predicted dose- and delay-dependent impairment. D2 receptor blockade had no effect. Activation of metabotropic glutamate 2/3 (mGluR2/3) receptors, which in the prefrontal cortex inhibits the slow asynchronous phase of glutamate release, also produced a delay-dependent impairment. Low doses of an AMPA/kainate antagonist had effects similar to the mGluR2/3 agonist. In contrast, NMDA receptor antagonist-induced impairment was memory load-insensitive, resulting in chance-level performance at all retention intervals. These findings suggest that activation of NMDA receptors is necessary for the formation of mnemonic encoding while modulatory components involving slow asynchronous release of glutamate and phasic release of dopamine contribute to the active maintenance of information during the delay period.</description><identifier>ISSN: 0033-3158</identifier><identifier>EISSN: 1432-2072</identifier><identifier>DOI: 10.1007/s002130000590</identifier><identifier>PMID: 11271408</identifier><identifier>CODEN: PSYPAG</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Amphetamine - pharmacology ; Amphetamines ; Animal ; Animals ; Biological and medical sciences ; Cognitive ability ; Dopamine ; Dopamine Antagonists - pharmacology ; Dopamine D1 receptors ; Dopamine D2 receptors ; Excitatory Amino Acid Antagonists - pharmacology ; Fundamental and applied biological sciences. Psychology ; Glutamic acid receptors (ionotropic) ; Glutamic acid receptors (metabotropic) ; Learning. Memory ; Male ; Memory ; Mental task performance ; Muscarinic Antagonists - pharmacology ; N-Methyl-D-aspartic acid receptors ; Prefrontal cortex ; Prefrontal Cortex - injuries ; Proactive interference ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Rats ; Rats, Sprague-Dawley ; Receptors, Dopamine - drug effects ; Receptors, Dopamine - physiology ; Receptors, Glutamate - drug effects ; Receptors, Glutamate - physiology ; Receptors, N-Methyl-D-Aspartate - drug effects ; Receptors, N-Methyl-D-Aspartate - physiology ; Retention ; Retention (Psychology) - drug effects ; Retention (Psychology) - physiology ; Scopolamine - pharmacology ; Short term memory ; Spatial memory ; Temporal lobe ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><ispartof>Psychopharmacologia, 2001-01, Vol.153 (3), p.353-364</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag 2000.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-6f95835d706b9ff35c0cbe8d62b92fe0b43327bb5831d0a43a71f287142d189d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=878120$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11271408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>AULTMAN, Julie M</creatorcontrib><creatorcontrib>MOGHADDAM, Bita</creatorcontrib><title>Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task</title><title>Psychopharmacologia</title><addtitle>Psychopharmacology (Berl)</addtitle><description>Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders. We compared the contribution of glutamate and dopamine receptor subtypes to temporal aspects of working memory using a modified rodent spatial working memory task that incorporates important elements of clinical working memory tasks. A discrete paired-trial variable-delay T-maze task was used. Initial characterization studies indicated that performance on this task is stable at seconds-long retention intervals, is sensitive to retention interval and proactive interference, and is dependent on the integrity of the medial prefrontal cortex. Consistent with clinical findings, low dose amphetamine (0.25 mg/kg) produced a delay-dependent improvement in performance, while higher doses impaired performance at all retention intervals. D1 receptor blockade produced the predicted dose- and delay-dependent impairment. D2 receptor blockade had no effect. Activation of metabotropic glutamate 2/3 (mGluR2/3) receptors, which in the prefrontal cortex inhibits the slow asynchronous phase of glutamate release, also produced a delay-dependent impairment. Low doses of an AMPA/kainate antagonist had effects similar to the mGluR2/3 agonist. In contrast, NMDA receptor antagonist-induced impairment was memory load-insensitive, resulting in chance-level performance at all retention intervals. These findings suggest that activation of NMDA receptors is necessary for the formation of mnemonic encoding while modulatory components involving slow asynchronous release of glutamate and phasic release of dopamine contribute to the active maintenance of information during the delay period.</description><subject>Amphetamine - pharmacology</subject><subject>Amphetamines</subject><subject>Animal</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cognitive ability</subject><subject>Dopamine</subject><subject>Dopamine Antagonists - pharmacology</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Learning. Memory</subject><subject>Male</subject><subject>Memory</subject><subject>Mental task performance</subject><subject>Muscarinic Antagonists - pharmacology</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - injuries</subject><subject>Proactive interference</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Dopamine - drug effects</subject><subject>Receptors, Dopamine - physiology</subject><subject>Receptors, Glutamate - drug effects</subject><subject>Receptors, Glutamate - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - drug effects</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Retention</subject><subject>Retention (Psychology) - drug effects</subject><subject>Retention (Psychology) - physiology</subject><subject>Scopolamine - pharmacology</subject><subject>Short term memory</subject><subject>Spatial memory</subject><subject>Temporal lobe</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><issn>0033-3158</issn><issn>1432-2072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U2LFDEQBuAgijuOHr1KQPDWmq_upI-yq6uw4EXPTTqpLNlNJ22Sdpl_4M824w5-XcwlBJ5UUfUi9JyS15QQ-aYQwign7fQjeYB2VHDWMSLZQ7QjhPOO016doSel3ByRUOIxOqOUSSqI2qHvF75UH03FJsWa_bxVn2LByeHrsFW96ApYR4ttWvXiI-AMBtaacsE14QrLmrIOWJcVTP35LycLseK7lG99vMYLLCkf8FaOD41N8NEbHcKhVQrwTTdadbl9ih45HQo8O9179OX9u8_nH7qrT5cfz99edUYIVrvBjb3ivZVkmEfneG-ImUHZgc0jc0BmwTmT89wQtUQLriV1TLVpmaVqtHyPXt3XXXP6ukGp0-KLgRB0hLSVSbY9jrwX_4VUyoEPrc8evfwH3qQtxzbExGlTspdibKq7VyanUjK4ac1-0fkwUTIdk5z-SrL5F6eq27yA_a1P0f3RVpe2T5d1NL78ckoqygj_ASfJpqc</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>AULTMAN, Julie M</creator><creator>MOGHADDAM, Bita</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20010101</creationdate><title>Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task</title><author>AULTMAN, Julie M ; MOGHADDAM, Bita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-6f95835d706b9ff35c0cbe8d62b92fe0b43327bb5831d0a43a71f287142d189d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amphetamine - pharmacology</topic><topic>Amphetamines</topic><topic>Animal</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cognitive ability</topic><topic>Dopamine</topic><topic>Dopamine Antagonists - pharmacology</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Learning. Memory</topic><topic>Male</topic><topic>Memory</topic><topic>Mental task performance</topic><topic>Muscarinic Antagonists - pharmacology</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - injuries</topic><topic>Proactive interference</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Dopamine - drug effects</topic><topic>Receptors, Dopamine - physiology</topic><topic>Receptors, Glutamate - drug effects</topic><topic>Receptors, Glutamate - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - drug effects</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Retention</topic><topic>Retention (Psychology) - drug effects</topic><topic>Retention (Psychology) - physiology</topic><topic>Scopolamine - pharmacology</topic><topic>Short term memory</topic><topic>Spatial memory</topic><topic>Temporal lobe</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AULTMAN, Julie M</creatorcontrib><creatorcontrib>MOGHADDAM, Bita</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychopharmacologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AULTMAN, Julie M</au><au>MOGHADDAM, Bita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task</atitle><jtitle>Psychopharmacologia</jtitle><addtitle>Psychopharmacology (Berl)</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>153</volume><issue>3</issue><spage>353</spage><epage>364</epage><pages>353-364</pages><issn>0033-3158</issn><eissn>1432-2072</eissn><coden>PSYPAG</coden><abstract>Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders. We compared the contribution of glutamate and dopamine receptor subtypes to temporal aspects of working memory using a modified rodent spatial working memory task that incorporates important elements of clinical working memory tasks. A discrete paired-trial variable-delay T-maze task was used. Initial characterization studies indicated that performance on this task is stable at seconds-long retention intervals, is sensitive to retention interval and proactive interference, and is dependent on the integrity of the medial prefrontal cortex. Consistent with clinical findings, low dose amphetamine (0.25 mg/kg) produced a delay-dependent improvement in performance, while higher doses impaired performance at all retention intervals. D1 receptor blockade produced the predicted dose- and delay-dependent impairment. D2 receptor blockade had no effect. Activation of metabotropic glutamate 2/3 (mGluR2/3) receptors, which in the prefrontal cortex inhibits the slow asynchronous phase of glutamate release, also produced a delay-dependent impairment. Low doses of an AMPA/kainate antagonist had effects similar to the mGluR2/3 agonist. In contrast, NMDA receptor antagonist-induced impairment was memory load-insensitive, resulting in chance-level performance at all retention intervals. These findings suggest that activation of NMDA receptors is necessary for the formation of mnemonic encoding while modulatory components involving slow asynchronous release of glutamate and phasic release of dopamine contribute to the active maintenance of information during the delay period.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>11271408</pmid><doi>10.1007/s002130000590</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3158
ispartof Psychopharmacologia, 2001-01, Vol.153 (3), p.353-364
issn 0033-3158
1432-2072
language eng
recordid cdi_proquest_miscellaneous_70599354
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amphetamine - pharmacology
Amphetamines
Animal
Animals
Biological and medical sciences
Cognitive ability
Dopamine
Dopamine Antagonists - pharmacology
Dopamine D1 receptors
Dopamine D2 receptors
Excitatory Amino Acid Antagonists - pharmacology
Fundamental and applied biological sciences. Psychology
Glutamic acid receptors (ionotropic)
Glutamic acid receptors (metabotropic)
Learning. Memory
Male
Memory
Mental task performance
Muscarinic Antagonists - pharmacology
N-Methyl-D-aspartic acid receptors
Prefrontal cortex
Prefrontal Cortex - injuries
Proactive interference
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Rats
Rats, Sprague-Dawley
Receptors, Dopamine - drug effects
Receptors, Dopamine - physiology
Receptors, Glutamate - drug effects
Receptors, Glutamate - physiology
Receptors, N-Methyl-D-Aspartate - drug effects
Receptors, N-Methyl-D-Aspartate - physiology
Retention
Retention (Psychology) - drug effects
Retention (Psychology) - physiology
Scopolamine - pharmacology
Short term memory
Spatial memory
Temporal lobe
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
title Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20contributions%20of%20glutamate%20and%20dopamine%20receptors%20to%20temporal%20aspects%20of%20rodent%20working%20memory%20using%20a%20clinically%20relevant%20task&rft.jtitle=Psychopharmacologia&rft.au=AULTMAN,%20Julie%20M&rft.date=2001-01-01&rft.volume=153&rft.issue=3&rft.spage=353&rft.epage=364&rft.pages=353-364&rft.issn=0033-3158&rft.eissn=1432-2072&rft.coden=PSYPAG&rft_id=info:doi/10.1007/s002130000590&rft_dat=%3Cproquest_cross%3E70599354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117775749&rft_id=info:pmid/11271408&rfr_iscdi=true