Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task
Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders. We compared the contribution of glutamate and dopamine recep...
Gespeichert in:
Veröffentlicht in: | Psychopharmacologia 2001-01, Vol.153 (3), p.353-364 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | 3 |
container_start_page | 353 |
container_title | Psychopharmacologia |
container_volume | 153 |
creator | AULTMAN, Julie M MOGHADDAM, Bita |
description | Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders.
We compared the contribution of glutamate and dopamine receptor subtypes to temporal aspects of working memory using a modified rodent spatial working memory task that incorporates important elements of clinical working memory tasks.
A discrete paired-trial variable-delay T-maze task was used. Initial characterization studies indicated that performance on this task is stable at seconds-long retention intervals, is sensitive to retention interval and proactive interference, and is dependent on the integrity of the medial prefrontal cortex.
Consistent with clinical findings, low dose amphetamine (0.25 mg/kg) produced a delay-dependent improvement in performance, while higher doses impaired performance at all retention intervals. D1 receptor blockade produced the predicted dose- and delay-dependent impairment. D2 receptor blockade had no effect. Activation of metabotropic glutamate 2/3 (mGluR2/3) receptors, which in the prefrontal cortex inhibits the slow asynchronous phase of glutamate release, also produced a delay-dependent impairment. Low doses of an AMPA/kainate antagonist had effects similar to the mGluR2/3 agonist. In contrast, NMDA receptor antagonist-induced impairment was memory load-insensitive, resulting in chance-level performance at all retention intervals.
These findings suggest that activation of NMDA receptors is necessary for the formation of mnemonic encoding while modulatory components involving slow asynchronous release of glutamate and phasic release of dopamine contribute to the active maintenance of information during the delay period. |
doi_str_mv | 10.1007/s002130000590 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70599354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70599354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-6f95835d706b9ff35c0cbe8d62b92fe0b43327bb5831d0a43a71f287142d189d3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgijuOHr1KQPDWmq_upI-yq6uw4EXPTTqpLNlNJ22Sdpl_4M824w5-XcwlBJ5UUfUi9JyS15QQ-aYQwign7fQjeYB2VHDWMSLZQ7QjhPOO016doSel3ByRUOIxOqOUSSqI2qHvF75UH03FJsWa_bxVn2LByeHrsFW96ApYR4ttWvXiI-AMBtaacsE14QrLmrIOWJcVTP35LycLseK7lG99vMYLLCkf8FaOD41N8NEbHcKhVQrwTTdadbl9ih45HQo8O9179OX9u8_nH7qrT5cfz99edUYIVrvBjb3ivZVkmEfneG-ImUHZgc0jc0BmwTmT89wQtUQLriV1TLVpmaVqtHyPXt3XXXP6ukGp0-KLgRB0hLSVSbY9jrwX_4VUyoEPrc8evfwH3qQtxzbExGlTspdibKq7VyanUjK4ac1-0fkwUTIdk5z-SrL5F6eq27yA_a1P0f3RVpe2T5d1NL78ckoqygj_ASfJpqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117775749</pqid></control><display><type>article</type><title>Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>AULTMAN, Julie M ; MOGHADDAM, Bita</creator><creatorcontrib>AULTMAN, Julie M ; MOGHADDAM, Bita</creatorcontrib><description>Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders.
We compared the contribution of glutamate and dopamine receptor subtypes to temporal aspects of working memory using a modified rodent spatial working memory task that incorporates important elements of clinical working memory tasks.
A discrete paired-trial variable-delay T-maze task was used. Initial characterization studies indicated that performance on this task is stable at seconds-long retention intervals, is sensitive to retention interval and proactive interference, and is dependent on the integrity of the medial prefrontal cortex.
Consistent with clinical findings, low dose amphetamine (0.25 mg/kg) produced a delay-dependent improvement in performance, while higher doses impaired performance at all retention intervals. D1 receptor blockade produced the predicted dose- and delay-dependent impairment. D2 receptor blockade had no effect. Activation of metabotropic glutamate 2/3 (mGluR2/3) receptors, which in the prefrontal cortex inhibits the slow asynchronous phase of glutamate release, also produced a delay-dependent impairment. Low doses of an AMPA/kainate antagonist had effects similar to the mGluR2/3 agonist. In contrast, NMDA receptor antagonist-induced impairment was memory load-insensitive, resulting in chance-level performance at all retention intervals.
These findings suggest that activation of NMDA receptors is necessary for the formation of mnemonic encoding while modulatory components involving slow asynchronous release of glutamate and phasic release of dopamine contribute to the active maintenance of information during the delay period.</description><identifier>ISSN: 0033-3158</identifier><identifier>EISSN: 1432-2072</identifier><identifier>DOI: 10.1007/s002130000590</identifier><identifier>PMID: 11271408</identifier><identifier>CODEN: PSYPAG</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Amphetamine - pharmacology ; Amphetamines ; Animal ; Animals ; Biological and medical sciences ; Cognitive ability ; Dopamine ; Dopamine Antagonists - pharmacology ; Dopamine D1 receptors ; Dopamine D2 receptors ; Excitatory Amino Acid Antagonists - pharmacology ; Fundamental and applied biological sciences. Psychology ; Glutamic acid receptors (ionotropic) ; Glutamic acid receptors (metabotropic) ; Learning. Memory ; Male ; Memory ; Mental task performance ; Muscarinic Antagonists - pharmacology ; N-Methyl-D-aspartic acid receptors ; Prefrontal cortex ; Prefrontal Cortex - injuries ; Proactive interference ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Rats ; Rats, Sprague-Dawley ; Receptors, Dopamine - drug effects ; Receptors, Dopamine - physiology ; Receptors, Glutamate - drug effects ; Receptors, Glutamate - physiology ; Receptors, N-Methyl-D-Aspartate - drug effects ; Receptors, N-Methyl-D-Aspartate - physiology ; Retention ; Retention (Psychology) - drug effects ; Retention (Psychology) - physiology ; Scopolamine - pharmacology ; Short term memory ; Spatial memory ; Temporal lobe ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><ispartof>Psychopharmacologia, 2001-01, Vol.153 (3), p.353-364</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag 2000.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-6f95835d706b9ff35c0cbe8d62b92fe0b43327bb5831d0a43a71f287142d189d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=878120$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11271408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>AULTMAN, Julie M</creatorcontrib><creatorcontrib>MOGHADDAM, Bita</creatorcontrib><title>Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task</title><title>Psychopharmacologia</title><addtitle>Psychopharmacology (Berl)</addtitle><description>Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders.
We compared the contribution of glutamate and dopamine receptor subtypes to temporal aspects of working memory using a modified rodent spatial working memory task that incorporates important elements of clinical working memory tasks.
A discrete paired-trial variable-delay T-maze task was used. Initial characterization studies indicated that performance on this task is stable at seconds-long retention intervals, is sensitive to retention interval and proactive interference, and is dependent on the integrity of the medial prefrontal cortex.
Consistent with clinical findings, low dose amphetamine (0.25 mg/kg) produced a delay-dependent improvement in performance, while higher doses impaired performance at all retention intervals. D1 receptor blockade produced the predicted dose- and delay-dependent impairment. D2 receptor blockade had no effect. Activation of metabotropic glutamate 2/3 (mGluR2/3) receptors, which in the prefrontal cortex inhibits the slow asynchronous phase of glutamate release, also produced a delay-dependent impairment. Low doses of an AMPA/kainate antagonist had effects similar to the mGluR2/3 agonist. In contrast, NMDA receptor antagonist-induced impairment was memory load-insensitive, resulting in chance-level performance at all retention intervals.
These findings suggest that activation of NMDA receptors is necessary for the formation of mnemonic encoding while modulatory components involving slow asynchronous release of glutamate and phasic release of dopamine contribute to the active maintenance of information during the delay period.</description><subject>Amphetamine - pharmacology</subject><subject>Amphetamines</subject><subject>Animal</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cognitive ability</subject><subject>Dopamine</subject><subject>Dopamine Antagonists - pharmacology</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Learning. Memory</subject><subject>Male</subject><subject>Memory</subject><subject>Mental task performance</subject><subject>Muscarinic Antagonists - pharmacology</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - injuries</subject><subject>Proactive interference</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Dopamine - drug effects</subject><subject>Receptors, Dopamine - physiology</subject><subject>Receptors, Glutamate - drug effects</subject><subject>Receptors, Glutamate - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - drug effects</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Retention</subject><subject>Retention (Psychology) - drug effects</subject><subject>Retention (Psychology) - physiology</subject><subject>Scopolamine - pharmacology</subject><subject>Short term memory</subject><subject>Spatial memory</subject><subject>Temporal lobe</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><issn>0033-3158</issn><issn>1432-2072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U2LFDEQBuAgijuOHr1KQPDWmq_upI-yq6uw4EXPTTqpLNlNJ22Sdpl_4M824w5-XcwlBJ5UUfUi9JyS15QQ-aYQwign7fQjeYB2VHDWMSLZQ7QjhPOO016doSel3ByRUOIxOqOUSSqI2qHvF75UH03FJsWa_bxVn2LByeHrsFW96ApYR4ttWvXiI-AMBtaacsE14QrLmrIOWJcVTP35LycLseK7lG99vMYLLCkf8FaOD41N8NEbHcKhVQrwTTdadbl9ih45HQo8O9179OX9u8_nH7qrT5cfz99edUYIVrvBjb3ivZVkmEfneG-ImUHZgc0jc0BmwTmT89wQtUQLriV1TLVpmaVqtHyPXt3XXXP6ukGp0-KLgRB0hLSVSbY9jrwX_4VUyoEPrc8evfwH3qQtxzbExGlTspdibKq7VyanUjK4ac1-0fkwUTIdk5z-SrL5F6eq27yA_a1P0f3RVpe2T5d1NL78ckoqygj_ASfJpqc</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>AULTMAN, Julie M</creator><creator>MOGHADDAM, Bita</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20010101</creationdate><title>Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task</title><author>AULTMAN, Julie M ; MOGHADDAM, Bita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-6f95835d706b9ff35c0cbe8d62b92fe0b43327bb5831d0a43a71f287142d189d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amphetamine - pharmacology</topic><topic>Amphetamines</topic><topic>Animal</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cognitive ability</topic><topic>Dopamine</topic><topic>Dopamine Antagonists - pharmacology</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Learning. Memory</topic><topic>Male</topic><topic>Memory</topic><topic>Mental task performance</topic><topic>Muscarinic Antagonists - pharmacology</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - injuries</topic><topic>Proactive interference</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Dopamine - drug effects</topic><topic>Receptors, Dopamine - physiology</topic><topic>Receptors, Glutamate - drug effects</topic><topic>Receptors, Glutamate - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - drug effects</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Retention</topic><topic>Retention (Psychology) - drug effects</topic><topic>Retention (Psychology) - physiology</topic><topic>Scopolamine - pharmacology</topic><topic>Short term memory</topic><topic>Spatial memory</topic><topic>Temporal lobe</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AULTMAN, Julie M</creatorcontrib><creatorcontrib>MOGHADDAM, Bita</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychopharmacologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AULTMAN, Julie M</au><au>MOGHADDAM, Bita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task</atitle><jtitle>Psychopharmacologia</jtitle><addtitle>Psychopharmacology (Berl)</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>153</volume><issue>3</issue><spage>353</spage><epage>364</epage><pages>353-364</pages><issn>0033-3158</issn><eissn>1432-2072</eissn><coden>PSYPAG</coden><abstract>Understanding the mechanistic basis of working memory, the capacity to hold representation "on line," is important for delineating the processes involved in higher cognitive functions and the pathophysiology of thought disorders.
We compared the contribution of glutamate and dopamine receptor subtypes to temporal aspects of working memory using a modified rodent spatial working memory task that incorporates important elements of clinical working memory tasks.
A discrete paired-trial variable-delay T-maze task was used. Initial characterization studies indicated that performance on this task is stable at seconds-long retention intervals, is sensitive to retention interval and proactive interference, and is dependent on the integrity of the medial prefrontal cortex.
Consistent with clinical findings, low dose amphetamine (0.25 mg/kg) produced a delay-dependent improvement in performance, while higher doses impaired performance at all retention intervals. D1 receptor blockade produced the predicted dose- and delay-dependent impairment. D2 receptor blockade had no effect. Activation of metabotropic glutamate 2/3 (mGluR2/3) receptors, which in the prefrontal cortex inhibits the slow asynchronous phase of glutamate release, also produced a delay-dependent impairment. Low doses of an AMPA/kainate antagonist had effects similar to the mGluR2/3 agonist. In contrast, NMDA receptor antagonist-induced impairment was memory load-insensitive, resulting in chance-level performance at all retention intervals.
These findings suggest that activation of NMDA receptors is necessary for the formation of mnemonic encoding while modulatory components involving slow asynchronous release of glutamate and phasic release of dopamine contribute to the active maintenance of information during the delay period.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>11271408</pmid><doi>10.1007/s002130000590</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3158 |
ispartof | Psychopharmacologia, 2001-01, Vol.153 (3), p.353-364 |
issn | 0033-3158 1432-2072 |
language | eng |
recordid | cdi_proquest_miscellaneous_70599354 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amphetamine - pharmacology Amphetamines Animal Animals Biological and medical sciences Cognitive ability Dopamine Dopamine Antagonists - pharmacology Dopamine D1 receptors Dopamine D2 receptors Excitatory Amino Acid Antagonists - pharmacology Fundamental and applied biological sciences. Psychology Glutamic acid receptors (ionotropic) Glutamic acid receptors (metabotropic) Learning. Memory Male Memory Mental task performance Muscarinic Antagonists - pharmacology N-Methyl-D-aspartic acid receptors Prefrontal cortex Prefrontal Cortex - injuries Proactive interference Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Rats Rats, Sprague-Dawley Receptors, Dopamine - drug effects Receptors, Dopamine - physiology Receptors, Glutamate - drug effects Receptors, Glutamate - physiology Receptors, N-Methyl-D-Aspartate - drug effects Receptors, N-Methyl-D-Aspartate - physiology Retention Retention (Psychology) - drug effects Retention (Psychology) - physiology Scopolamine - pharmacology Short term memory Spatial memory Temporal lobe α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid |
title | Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20contributions%20of%20glutamate%20and%20dopamine%20receptors%20to%20temporal%20aspects%20of%20rodent%20working%20memory%20using%20a%20clinically%20relevant%20task&rft.jtitle=Psychopharmacologia&rft.au=AULTMAN,%20Julie%20M&rft.date=2001-01-01&rft.volume=153&rft.issue=3&rft.spage=353&rft.epage=364&rft.pages=353-364&rft.issn=0033-3158&rft.eissn=1432-2072&rft.coden=PSYPAG&rft_id=info:doi/10.1007/s002130000590&rft_dat=%3Cproquest_cross%3E70599354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117775749&rft_id=info:pmid/11271408&rfr_iscdi=true |