Charge displacement by adhesion and spreading of a cell

The potentiostatic control of surface charge density and interfacial tension of an electrode immersed in an aqueous electrolyte solution offers a possibility for direct studies of non-specific interactions in cell adhesion. Unicellular marine alga, Dunaliella tertiolecta (Chlorophyceae) of micromete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIOELECTROCHEMISTRY 2001, Vol.53 (1), p.79-86
Hauptverfasser: Svetlicić, V, Ivosević, N, Kovac, S, Zutić, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 79
container_title BIOELECTROCHEMISTRY
container_volume 53
creator Svetlicić, V
Ivosević, N
Kovac, S
Zutić, V
description The potentiostatic control of surface charge density and interfacial tension of an electrode immersed in an aqueous electrolyte solution offers a possibility for direct studies of non-specific interactions in cell adhesion. Unicellular marine alga, Dunaliella tertiolecta (Chlorophyceae) of micrometer size and flexible cell envelope was used as a model cell and 0.1 M NaCl as supporting electrolyte. The dropping mercury electrode acted as in situ adhesion sensor and the electrochemical technique of chronoamperometry allowed measurement of the spread cell–electrode interface area and the distance of the closest approach of a cell. The adhesion and spreading of a single cell at the mercury electrode causes a displacement of counter-ions from the electrical double layer over a broad range of the positive and negative surface charge densities (from +16.0 to −8.2 μC/cm 2). The flow of compensating current reflects the dynamics of adhesive contact formation and subsequent spreading of a cell. The adhesion and spreading rates are enhanced by the hydrodynamic regime of electrode's growing fluid interface. The distance of the closest approach of an adherent cell is smaller or equal to the distance of the outer Helmholz plane within the electrical double layer, i.e. 0.3–0.5 nm. There is a clear evidence of cell rupture for the potentials of maximum attraction as the area of the contact interface exceeded up to 100 times the cross-section area of a free cell.
doi_str_mv 10.1016/S0302-4598(00)00115-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70587848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030245980000115X</els_id><sourcerecordid>70587848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ea816e5e2cf590fc22f9102efb2a344b4dc9d0b7cd2004fad8d403cb777344e83</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMotlZ_grIn0cPqJJtsdk8ixRcUPKjQW8gms21kXyZbof_e7QM89jQD883rI-SSwh0Fmt5_QAIs5iLPbgBuASgV8fyIjGkms1ikbH485CKVsUhyPiJnIXwDQEalOCUjShmkOcvGRE6X2i8wsi50lTZYY9NHxTrSdonBtU2kGxuFzqO2rllEbRnpyGBVnZOTUlcBL_ZxQr6enz6nr_Hs_eVt-jiLTZKzPkad0RQFMlOKHErDWJlTYFgWTCecF9ya3EIhjWUAvNQ2sxwSU0gphzJmyYRc7-Z2vv1ZYehV7cLmAN1guwpKghge5odBRnnKaZoPoNiBxrcheCxV512t_VpRUBu1aqtWbdQqALVVq-ZD39V-waqo0f537V0OwMMOwMHHr0OvgnHYGLTOo-mVbd2BFX9qeofI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21464169</pqid></control><display><type>article</type><title>Charge displacement by adhesion and spreading of a cell</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Svetlicić, V ; Ivosević, N ; Kovac, S ; Zutić, V</creator><creatorcontrib>Svetlicić, V ; Ivosević, N ; Kovac, S ; Zutić, V</creatorcontrib><description>The potentiostatic control of surface charge density and interfacial tension of an electrode immersed in an aqueous electrolyte solution offers a possibility for direct studies of non-specific interactions in cell adhesion. Unicellular marine alga, Dunaliella tertiolecta (Chlorophyceae) of micrometer size and flexible cell envelope was used as a model cell and 0.1 M NaCl as supporting electrolyte. The dropping mercury electrode acted as in situ adhesion sensor and the electrochemical technique of chronoamperometry allowed measurement of the spread cell–electrode interface area and the distance of the closest approach of a cell. The adhesion and spreading of a single cell at the mercury electrode causes a displacement of counter-ions from the electrical double layer over a broad range of the positive and negative surface charge densities (from +16.0 to −8.2 μC/cm 2). The flow of compensating current reflects the dynamics of adhesive contact formation and subsequent spreading of a cell. The adhesion and spreading rates are enhanced by the hydrodynamic regime of electrode's growing fluid interface. The distance of the closest approach of an adherent cell is smaller or equal to the distance of the outer Helmholz plane within the electrical double layer, i.e. 0.3–0.5 nm. There is a clear evidence of cell rupture for the potentials of maximum attraction as the area of the contact interface exceeded up to 100 times the cross-section area of a free cell.</description><identifier>ISSN: 1567-5394</identifier><identifier>ISSN: 0302-4598</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/S0302-4598(00)00115-X</identifier><identifier>PMID: 11206928</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adhesion ; Cell Adhesion ; Cell Size ; Dropping mercury electrode as adhesion sensor ; Dunaliella tertiolecta as a model cell ; Electric charge ; Electrical adhesion signals ; Electrochemical electrodes ; Electrochemistry ; Electrodes ; Electrolytes ; Eukaryota - cytology ; Hydrodynamics ; Interfaces (materials) ; Kinetics ; Membrane Potentials - physiology ; Mercury (metal) ; Sodium chloride ; Static Electricity ; Surface tension</subject><ispartof>BIOELECTROCHEMISTRY, 2001, Vol.53 (1), p.79-86</ispartof><rights>2000 Elsevier Science S.A.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ea816e5e2cf590fc22f9102efb2a344b4dc9d0b7cd2004fad8d403cb777344e83</citedby><cites>FETCH-LOGICAL-c392t-ea816e5e2cf590fc22f9102efb2a344b4dc9d0b7cd2004fad8d403cb777344e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030245980000115X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11206928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svetlicić, V</creatorcontrib><creatorcontrib>Ivosević, N</creatorcontrib><creatorcontrib>Kovac, S</creatorcontrib><creatorcontrib>Zutić, V</creatorcontrib><title>Charge displacement by adhesion and spreading of a cell</title><title>BIOELECTROCHEMISTRY</title><addtitle>Bioelectrochemistry</addtitle><description>The potentiostatic control of surface charge density and interfacial tension of an electrode immersed in an aqueous electrolyte solution offers a possibility for direct studies of non-specific interactions in cell adhesion. Unicellular marine alga, Dunaliella tertiolecta (Chlorophyceae) of micrometer size and flexible cell envelope was used as a model cell and 0.1 M NaCl as supporting electrolyte. The dropping mercury electrode acted as in situ adhesion sensor and the electrochemical technique of chronoamperometry allowed measurement of the spread cell–electrode interface area and the distance of the closest approach of a cell. The adhesion and spreading of a single cell at the mercury electrode causes a displacement of counter-ions from the electrical double layer over a broad range of the positive and negative surface charge densities (from +16.0 to −8.2 μC/cm 2). The flow of compensating current reflects the dynamics of adhesive contact formation and subsequent spreading of a cell. The adhesion and spreading rates are enhanced by the hydrodynamic regime of electrode's growing fluid interface. The distance of the closest approach of an adherent cell is smaller or equal to the distance of the outer Helmholz plane within the electrical double layer, i.e. 0.3–0.5 nm. There is a clear evidence of cell rupture for the potentials of maximum attraction as the area of the contact interface exceeded up to 100 times the cross-section area of a free cell.</description><subject>Adhesion</subject><subject>Cell Adhesion</subject><subject>Cell Size</subject><subject>Dropping mercury electrode as adhesion sensor</subject><subject>Dunaliella tertiolecta as a model cell</subject><subject>Electric charge</subject><subject>Electrical adhesion signals</subject><subject>Electrochemical electrodes</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Eukaryota - cytology</subject><subject>Hydrodynamics</subject><subject>Interfaces (materials)</subject><subject>Kinetics</subject><subject>Membrane Potentials - physiology</subject><subject>Mercury (metal)</subject><subject>Sodium chloride</subject><subject>Static Electricity</subject><subject>Surface tension</subject><issn>1567-5394</issn><issn>0302-4598</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEQgIMotlZ_grIn0cPqJJtsdk8ixRcUPKjQW8gms21kXyZbof_e7QM89jQD883rI-SSwh0Fmt5_QAIs5iLPbgBuASgV8fyIjGkms1ikbH485CKVsUhyPiJnIXwDQEalOCUjShmkOcvGRE6X2i8wsi50lTZYY9NHxTrSdonBtU2kGxuFzqO2rllEbRnpyGBVnZOTUlcBL_ZxQr6enz6nr_Hs_eVt-jiLTZKzPkad0RQFMlOKHErDWJlTYFgWTCecF9ya3EIhjWUAvNQ2sxwSU0gphzJmyYRc7-Z2vv1ZYehV7cLmAN1guwpKghge5odBRnnKaZoPoNiBxrcheCxV512t_VpRUBu1aqtWbdQqALVVq-ZD39V-waqo0f537V0OwMMOwMHHr0OvgnHYGLTOo-mVbd2BFX9qeofI</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Svetlicić, V</creator><creator>Ivosević, N</creator><creator>Kovac, S</creator><creator>Zutić, V</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2001</creationdate><title>Charge displacement by adhesion and spreading of a cell</title><author>Svetlicić, V ; Ivosević, N ; Kovac, S ; Zutić, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ea816e5e2cf590fc22f9102efb2a344b4dc9d0b7cd2004fad8d403cb777344e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adhesion</topic><topic>Cell Adhesion</topic><topic>Cell Size</topic><topic>Dropping mercury electrode as adhesion sensor</topic><topic>Dunaliella tertiolecta as a model cell</topic><topic>Electric charge</topic><topic>Electrical adhesion signals</topic><topic>Electrochemical electrodes</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Eukaryota - cytology</topic><topic>Hydrodynamics</topic><topic>Interfaces (materials)</topic><topic>Kinetics</topic><topic>Membrane Potentials - physiology</topic><topic>Mercury (metal)</topic><topic>Sodium chloride</topic><topic>Static Electricity</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svetlicić, V</creatorcontrib><creatorcontrib>Ivosević, N</creatorcontrib><creatorcontrib>Kovac, S</creatorcontrib><creatorcontrib>Zutić, V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BIOELECTROCHEMISTRY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svetlicić, V</au><au>Ivosević, N</au><au>Kovac, S</au><au>Zutić, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge displacement by adhesion and spreading of a cell</atitle><jtitle>BIOELECTROCHEMISTRY</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2001</date><risdate>2001</risdate><volume>53</volume><issue>1</issue><spage>79</spage><epage>86</epage><pages>79-86</pages><issn>1567-5394</issn><issn>0302-4598</issn><eissn>1878-562X</eissn><abstract>The potentiostatic control of surface charge density and interfacial tension of an electrode immersed in an aqueous electrolyte solution offers a possibility for direct studies of non-specific interactions in cell adhesion. Unicellular marine alga, Dunaliella tertiolecta (Chlorophyceae) of micrometer size and flexible cell envelope was used as a model cell and 0.1 M NaCl as supporting electrolyte. The dropping mercury electrode acted as in situ adhesion sensor and the electrochemical technique of chronoamperometry allowed measurement of the spread cell–electrode interface area and the distance of the closest approach of a cell. The adhesion and spreading of a single cell at the mercury electrode causes a displacement of counter-ions from the electrical double layer over a broad range of the positive and negative surface charge densities (from +16.0 to −8.2 μC/cm 2). The flow of compensating current reflects the dynamics of adhesive contact formation and subsequent spreading of a cell. The adhesion and spreading rates are enhanced by the hydrodynamic regime of electrode's growing fluid interface. The distance of the closest approach of an adherent cell is smaller or equal to the distance of the outer Helmholz plane within the electrical double layer, i.e. 0.3–0.5 nm. There is a clear evidence of cell rupture for the potentials of maximum attraction as the area of the contact interface exceeded up to 100 times the cross-section area of a free cell.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>11206928</pmid><doi>10.1016/S0302-4598(00)00115-X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-5394
ispartof BIOELECTROCHEMISTRY, 2001, Vol.53 (1), p.79-86
issn 1567-5394
0302-4598
1878-562X
language eng
recordid cdi_proquest_miscellaneous_70587848
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adhesion
Cell Adhesion
Cell Size
Dropping mercury electrode as adhesion sensor
Dunaliella tertiolecta as a model cell
Electric charge
Electrical adhesion signals
Electrochemical electrodes
Electrochemistry
Electrodes
Electrolytes
Eukaryota - cytology
Hydrodynamics
Interfaces (materials)
Kinetics
Membrane Potentials - physiology
Mercury (metal)
Sodium chloride
Static Electricity
Surface tension
title Charge displacement by adhesion and spreading of a cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20displacement%20by%20adhesion%20and%20spreading%20of%20a%20cell&rft.jtitle=BIOELECTROCHEMISTRY&rft.au=Svetlici%C4%87,%20V&rft.date=2001&rft.volume=53&rft.issue=1&rft.spage=79&rft.epage=86&rft.pages=79-86&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/S0302-4598(00)00115-X&rft_dat=%3Cproquest_cross%3E70587848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21464169&rft_id=info:pmid/11206928&rft_els_id=S030245980000115X&rfr_iscdi=true