Stimulated endocrine cell proliferation and differentiation in transplanted human pancreatic islets : Effects of the ob gene and compensatory growth of the implantation organ
Neogenesis is crucial for the maintenance of beta-cell mass in the human pancreas and possibly for the outcome of clinical islet transplantation. To date, no studies have reported a stimulation of human beta-cell neogenesis in vivo. Therefore, we investigated whether human alpha-, beta-, and duct ce...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2001-02, Vol.50 (2), p.301-307 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neogenesis is crucial for the maintenance of beta-cell mass in the human pancreas and possibly for the outcome of clinical islet transplantation. To date, no studies have reported a stimulation of human beta-cell neogenesis in vivo. Therefore, we investigated whether human alpha-, beta-, and duct cell growth can be stimulated when human islets are xenotransplanted to obese hyperglycemic-hyperinsulinemic ob/ob mice immunosuppressed with anti-lymphocyte serum. Moreover, we wanted to study whether beta-cell growth and duct-to-beta-cell differentiation were induced in the hepatocyte growth factor (HGF)-dependent compensatory kidney growth model. For that purpose, we evaluated human islets grafted to nude (nu/nu) mice before uninephrectomy of the contralateral kidney for DNA-synthesis and duct cell expression of the beta-cell-specific transcription factor Nkx 6.1 as an estimate of differentiation. Human islet grafts were well preserved after 2 weeks when transplanted to ob/ob mice during anti-lymphocyte immunosuppression. Both human beta-cells (P < 0.01) and duct cells (P < 0.001) were growth stimulated when islets were transplanted to ob/ob mice. We also observed a correlation between increased duct cell proliferation and increased organ donor age (P = 0.02). Moreover, duct (P < 0.05) and beta-cell (P < 0.05) proliferation, as well as duct cell Nkx 6.1 expression (P < 0.05), were enhanced by the compensatory kidney growth after uninephrectomy. We conclude that it is possible to stimulate human beta-cell neogenesis in vivo, provided that the recipient carries certain growth-stimulatory traits. Furthermore, it seems that duct cell proliferation increases with increasing organ donor age. Altogether, these data and previous results from our laboratory suggest that human beta-cell neogenesis becomes more dependent on differentiation and less dependent on proliferation with increasing age. |
---|---|
ISSN: | 0012-1797 1939-327X |
DOI: | 10.2337/diabetes.50.2.301 |