Dosimetry from organ to cellular dimensions

While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2001-03, Vol.25 (2), p.187-193
Hauptverfasser: Thierens, H.M, Monsieurs, M.A, Brans, B, Van Driessche, T, Christiaens, I, Dierckx, R.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 187
container_title Computerized medical imaging and graphics
container_volume 25
creator Thierens, H.M
Monsieurs, M.A
Brans, B
Van Driessche, T
Christiaens, I
Dierckx, R.A
description While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a non-uniform activity distribution. For the individual treatment planning of patients treated with common radionuclides emitting high energy betas, the individual activity distribution has to be obtained from CT-SPECT images and the doses to the target organs and critical tissues have to be calculated by point-kernel methods. Due to the stochastic nature, alpha-radioimmunotherapy (alpha-RIT) requires microdosimetric calculations with Monte Carlo on a realistic model of the source and target tissue at the micrometer level. For a prediction of the biological effects of intracellular labelling with Auger electron emitters an accurate subcellular modelling including the DNA structure at the nanometre level with knowledge of the target for the considered biological effect is necessary.
doi_str_mv 10.1016/S0895-6111(00)00047-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70581778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611100000471</els_id><sourcerecordid>70581778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-c4a86e00e4937c0341173e7aab95b32c88b00c89b177e4b766d673c658ce0d0c3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMobk5_glIQRJHqyZom6ZXI_ISBF-p1SNMzibTNTFph_97sg3m5mxM4ed7k5SHklMINBcpv30EWecoppZcAVwDAREr3yJBKUaQgBN0nwy0yIEchfEdoDIIekkFcZUIU-ZBcP7hgG-z8Ipl51yTOf-k26VxisK77WvukitdtsK4Nx-RgpuuAJ5tzRD6fHj8mL-n07fl1cj9NDRtDF6eWHAGQFZkwkDFKRYZC67LIy2xspCwBjCxKKgSyUnBecZEZnkuDUIHJRuRi_e7cu58eQ6caG5Z9dIuuD0pALmNW7gTHlLECOI9gvgaNdyF4nKm5t432C0VBLXWqlU61dKUA1EqnojF3tvmgLxus_lMbfxE43wA6GF3PvG6NDVtOFsA4i9TdmsJo7deiV8FYbA1W1qPpVOXsjiJ_54qO8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21449066</pqid></control><display><type>article</type><title>Dosimetry from organ to cellular dimensions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Thierens, H.M ; Monsieurs, M.A ; Brans, B ; Van Driessche, T ; Christiaens, I ; Dierckx, R.A</creator><creatorcontrib>Thierens, H.M ; Monsieurs, M.A ; Brans, B ; Van Driessche, T ; Christiaens, I ; Dierckx, R.A</creatorcontrib><description>While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a non-uniform activity distribution. For the individual treatment planning of patients treated with common radionuclides emitting high energy betas, the individual activity distribution has to be obtained from CT-SPECT images and the doses to the target organs and critical tissues have to be calculated by point-kernel methods. Due to the stochastic nature, alpha-radioimmunotherapy (alpha-RIT) requires microdosimetric calculations with Monte Carlo on a realistic model of the source and target tissue at the micrometer level. For a prediction of the biological effects of intracellular labelling with Auger electron emitters an accurate subcellular modelling including the DNA structure at the nanometre level with knowledge of the target for the considered biological effect is necessary.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/S0895-6111(00)00047-1</identifier><identifier>PMID: 11137795</identifier><language>eng</language><publisher>New York, NY: Elsevier Ltd</publisher><subject>3-Iodobenzylguanidine - therapeutic use ; Alpha Particles - therapeutic use ; Alpha-radioimmunotherapy ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - therapeutic use ; Applied radiobiology (equipment, dosimetry...) ; Auger electrons ; Beta Particles - therapeutic use ; Biological and medical sciences ; Biological effects of radiation ; Bone Marrow - radiation effects ; Cells - radiation effects ; Computational methods ; Computer Simulation ; DNA ; Dosimetry ; Female ; Fundamental and applied biological sciences. Psychology ; Humans ; Image analysis ; Internal dosimetry ; Linear Energy Transfer ; Male ; Medical internal radiation dose ; Monte Carlo Method ; Monte Carlo methods ; Neuroblastoma - diagnostic imaging ; Neuroblastoma - radiotherapy ; Point–kernel methods ; Predictive Value of Tests ; Radioimmunotherapy - standards ; Radiometry - methods ; Radiometry - standards ; Radiopharmaceuticals - pharmacokinetics ; Radiopharmaceuticals - therapeutic use ; Radiotherapy - standards ; Tissue Distribution ; Tissues, organs and organisms biophysics ; Tomography, Emission-Computed, Single-Photon ; Tomography, X-Ray Computed</subject><ispartof>Computerized medical imaging and graphics, 2001-03, Vol.25 (2), p.187-193</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-c4a86e00e4937c0341173e7aab95b32c88b00c89b177e4b766d673c658ce0d0c3</citedby><cites>FETCH-LOGICAL-c420t-c4a86e00e4937c0341173e7aab95b32c88b00c89b177e4b766d673c658ce0d0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0895-6111(00)00047-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=890464$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11137795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thierens, H.M</creatorcontrib><creatorcontrib>Monsieurs, M.A</creatorcontrib><creatorcontrib>Brans, B</creatorcontrib><creatorcontrib>Van Driessche, T</creatorcontrib><creatorcontrib>Christiaens, I</creatorcontrib><creatorcontrib>Dierckx, R.A</creatorcontrib><title>Dosimetry from organ to cellular dimensions</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a non-uniform activity distribution. For the individual treatment planning of patients treated with common radionuclides emitting high energy betas, the individual activity distribution has to be obtained from CT-SPECT images and the doses to the target organs and critical tissues have to be calculated by point-kernel methods. Due to the stochastic nature, alpha-radioimmunotherapy (alpha-RIT) requires microdosimetric calculations with Monte Carlo on a realistic model of the source and target tissue at the micrometer level. For a prediction of the biological effects of intracellular labelling with Auger electron emitters an accurate subcellular modelling including the DNA structure at the nanometre level with knowledge of the target for the considered biological effect is necessary.</description><subject>3-Iodobenzylguanidine - therapeutic use</subject><subject>Alpha Particles - therapeutic use</subject><subject>Alpha-radioimmunotherapy</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Applied radiobiology (equipment, dosimetry...)</subject><subject>Auger electrons</subject><subject>Beta Particles - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Biological effects of radiation</subject><subject>Bone Marrow - radiation effects</subject><subject>Cells - radiation effects</subject><subject>Computational methods</subject><subject>Computer Simulation</subject><subject>DNA</subject><subject>Dosimetry</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Internal dosimetry</subject><subject>Linear Energy Transfer</subject><subject>Male</subject><subject>Medical internal radiation dose</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Neuroblastoma - diagnostic imaging</subject><subject>Neuroblastoma - radiotherapy</subject><subject>Point–kernel methods</subject><subject>Predictive Value of Tests</subject><subject>Radioimmunotherapy - standards</subject><subject>Radiometry - methods</subject><subject>Radiometry - standards</subject><subject>Radiopharmaceuticals - pharmacokinetics</subject><subject>Radiopharmaceuticals - therapeutic use</subject><subject>Radiotherapy - standards</subject><subject>Tissue Distribution</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><subject>Tomography, X-Ray Computed</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1LwzAUhoMobk5_glIQRJHqyZom6ZXI_ISBF-p1SNMzibTNTFph_97sg3m5mxM4ed7k5SHklMINBcpv30EWecoppZcAVwDAREr3yJBKUaQgBN0nwy0yIEchfEdoDIIekkFcZUIU-ZBcP7hgG-z8Ipl51yTOf-k26VxisK77WvukitdtsK4Nx-RgpuuAJ5tzRD6fHj8mL-n07fl1cj9NDRtDF6eWHAGQFZkwkDFKRYZC67LIy2xspCwBjCxKKgSyUnBecZEZnkuDUIHJRuRi_e7cu58eQ6caG5Z9dIuuD0pALmNW7gTHlLECOI9gvgaNdyF4nKm5t432C0VBLXWqlU61dKUA1EqnojF3tvmgLxus_lMbfxE43wA6GF3PvG6NDVtOFsA4i9TdmsJo7deiV8FYbA1W1qPpVOXsjiJ_54qO8g</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Thierens, H.M</creator><creator>Monsieurs, M.A</creator><creator>Brans, B</creator><creator>Van Driessche, T</creator><creator>Christiaens, I</creator><creator>Dierckx, R.A</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010301</creationdate><title>Dosimetry from organ to cellular dimensions</title><author>Thierens, H.M ; Monsieurs, M.A ; Brans, B ; Van Driessche, T ; Christiaens, I ; Dierckx, R.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-c4a86e00e4937c0341173e7aab95b32c88b00c89b177e4b766d673c658ce0d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>3-Iodobenzylguanidine - therapeutic use</topic><topic>Alpha Particles - therapeutic use</topic><topic>Alpha-radioimmunotherapy</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Applied radiobiology (equipment, dosimetry...)</topic><topic>Auger electrons</topic><topic>Beta Particles - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Biological effects of radiation</topic><topic>Bone Marrow - radiation effects</topic><topic>Cells - radiation effects</topic><topic>Computational methods</topic><topic>Computer Simulation</topic><topic>DNA</topic><topic>Dosimetry</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Internal dosimetry</topic><topic>Linear Energy Transfer</topic><topic>Male</topic><topic>Medical internal radiation dose</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Neuroblastoma - diagnostic imaging</topic><topic>Neuroblastoma - radiotherapy</topic><topic>Point–kernel methods</topic><topic>Predictive Value of Tests</topic><topic>Radioimmunotherapy - standards</topic><topic>Radiometry - methods</topic><topic>Radiometry - standards</topic><topic>Radiopharmaceuticals - pharmacokinetics</topic><topic>Radiopharmaceuticals - therapeutic use</topic><topic>Radiotherapy - standards</topic><topic>Tissue Distribution</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thierens, H.M</creatorcontrib><creatorcontrib>Monsieurs, M.A</creatorcontrib><creatorcontrib>Brans, B</creatorcontrib><creatorcontrib>Van Driessche, T</creatorcontrib><creatorcontrib>Christiaens, I</creatorcontrib><creatorcontrib>Dierckx, R.A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thierens, H.M</au><au>Monsieurs, M.A</au><au>Brans, B</au><au>Van Driessche, T</au><au>Christiaens, I</au><au>Dierckx, R.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dosimetry from organ to cellular dimensions</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2001-03-01</date><risdate>2001</risdate><volume>25</volume><issue>2</issue><spage>187</spage><epage>193</epage><pages>187-193</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a non-uniform activity distribution. For the individual treatment planning of patients treated with common radionuclides emitting high energy betas, the individual activity distribution has to be obtained from CT-SPECT images and the doses to the target organs and critical tissues have to be calculated by point-kernel methods. Due to the stochastic nature, alpha-radioimmunotherapy (alpha-RIT) requires microdosimetric calculations with Monte Carlo on a realistic model of the source and target tissue at the micrometer level. For a prediction of the biological effects of intracellular labelling with Auger electron emitters an accurate subcellular modelling including the DNA structure at the nanometre level with knowledge of the target for the considered biological effect is necessary.</abstract><cop>New York, NY</cop><pub>Elsevier Ltd</pub><pmid>11137795</pmid><doi>10.1016/S0895-6111(00)00047-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 2001-03, Vol.25 (2), p.187-193
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_70581778
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 3-Iodobenzylguanidine - therapeutic use
Alpha Particles - therapeutic use
Alpha-radioimmunotherapy
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - therapeutic use
Applied radiobiology (equipment, dosimetry...)
Auger electrons
Beta Particles - therapeutic use
Biological and medical sciences
Biological effects of radiation
Bone Marrow - radiation effects
Cells - radiation effects
Computational methods
Computer Simulation
DNA
Dosimetry
Female
Fundamental and applied biological sciences. Psychology
Humans
Image analysis
Internal dosimetry
Linear Energy Transfer
Male
Medical internal radiation dose
Monte Carlo Method
Monte Carlo methods
Neuroblastoma - diagnostic imaging
Neuroblastoma - radiotherapy
Point–kernel methods
Predictive Value of Tests
Radioimmunotherapy - standards
Radiometry - methods
Radiometry - standards
Radiopharmaceuticals - pharmacokinetics
Radiopharmaceuticals - therapeutic use
Radiotherapy - standards
Tissue Distribution
Tissues, organs and organisms biophysics
Tomography, Emission-Computed, Single-Photon
Tomography, X-Ray Computed
title Dosimetry from organ to cellular dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dosimetry%20from%20organ%20to%20cellular%20dimensions&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Thierens,%20H.M&rft.date=2001-03-01&rft.volume=25&rft.issue=2&rft.spage=187&rft.epage=193&rft.pages=187-193&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/S0895-6111(00)00047-1&rft_dat=%3Cproquest_cross%3E70581778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21449066&rft_id=info:pmid/11137795&rft_els_id=S0895611100000471&rfr_iscdi=true