Dosimetry from organ to cellular dimensions
While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a no...
Gespeichert in:
Veröffentlicht in: | Computerized medical imaging and graphics 2001-03, Vol.25 (2), p.187-193 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 2 |
container_start_page | 187 |
container_title | Computerized medical imaging and graphics |
container_volume | 25 |
creator | Thierens, H.M Monsieurs, M.A Brans, B Van Driessche, T Christiaens, I Dierckx, R.A |
description | While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a non-uniform activity distribution. For the individual treatment planning of patients treated with common radionuclides emitting high energy betas, the individual activity distribution has to be obtained from CT-SPECT images and the doses to the target organs and critical tissues have to be calculated by point-kernel methods. Due to the stochastic nature, alpha-radioimmunotherapy (alpha-RIT) requires microdosimetric calculations with Monte Carlo on a realistic model of the source and target tissue at the micrometer level. For a prediction of the biological effects of intracellular labelling with Auger electron emitters an accurate subcellular modelling including the DNA structure at the nanometre level with knowledge of the target for the considered biological effect is necessary. |
doi_str_mv | 10.1016/S0895-6111(00)00047-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70581778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611100000471</els_id><sourcerecordid>70581778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-c4a86e00e4937c0341173e7aab95b32c88b00c89b177e4b766d673c658ce0d0c3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMobk5_glIQRJHqyZom6ZXI_ISBF-p1SNMzibTNTFph_97sg3m5mxM4ed7k5SHklMINBcpv30EWecoppZcAVwDAREr3yJBKUaQgBN0nwy0yIEchfEdoDIIekkFcZUIU-ZBcP7hgG-z8Ipl51yTOf-k26VxisK77WvukitdtsK4Nx-RgpuuAJ5tzRD6fHj8mL-n07fl1cj9NDRtDF6eWHAGQFZkwkDFKRYZC67LIy2xspCwBjCxKKgSyUnBecZEZnkuDUIHJRuRi_e7cu58eQ6caG5Z9dIuuD0pALmNW7gTHlLECOI9gvgaNdyF4nKm5t432C0VBLXWqlU61dKUA1EqnojF3tvmgLxus_lMbfxE43wA6GF3PvG6NDVtOFsA4i9TdmsJo7deiV8FYbA1W1qPpVOXsjiJ_54qO8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21449066</pqid></control><display><type>article</type><title>Dosimetry from organ to cellular dimensions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Thierens, H.M ; Monsieurs, M.A ; Brans, B ; Van Driessche, T ; Christiaens, I ; Dierckx, R.A</creator><creatorcontrib>Thierens, H.M ; Monsieurs, M.A ; Brans, B ; Van Driessche, T ; Christiaens, I ; Dierckx, R.A</creatorcontrib><description>While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a non-uniform activity distribution. For the individual treatment planning of patients treated with common radionuclides emitting high energy betas, the individual activity distribution has to be obtained from CT-SPECT images and the doses to the target organs and critical tissues have to be calculated by point-kernel methods. Due to the stochastic nature, alpha-radioimmunotherapy (alpha-RIT) requires microdosimetric calculations with Monte Carlo on a realistic model of the source and target tissue at the micrometer level. For a prediction of the biological effects of intracellular labelling with Auger electron emitters an accurate subcellular modelling including the DNA structure at the nanometre level with knowledge of the target for the considered biological effect is necessary.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/S0895-6111(00)00047-1</identifier><identifier>PMID: 11137795</identifier><language>eng</language><publisher>New York, NY: Elsevier Ltd</publisher><subject>3-Iodobenzylguanidine - therapeutic use ; Alpha Particles - therapeutic use ; Alpha-radioimmunotherapy ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - therapeutic use ; Applied radiobiology (equipment, dosimetry...) ; Auger electrons ; Beta Particles - therapeutic use ; Biological and medical sciences ; Biological effects of radiation ; Bone Marrow - radiation effects ; Cells - radiation effects ; Computational methods ; Computer Simulation ; DNA ; Dosimetry ; Female ; Fundamental and applied biological sciences. Psychology ; Humans ; Image analysis ; Internal dosimetry ; Linear Energy Transfer ; Male ; Medical internal radiation dose ; Monte Carlo Method ; Monte Carlo methods ; Neuroblastoma - diagnostic imaging ; Neuroblastoma - radiotherapy ; Point–kernel methods ; Predictive Value of Tests ; Radioimmunotherapy - standards ; Radiometry - methods ; Radiometry - standards ; Radiopharmaceuticals - pharmacokinetics ; Radiopharmaceuticals - therapeutic use ; Radiotherapy - standards ; Tissue Distribution ; Tissues, organs and organisms biophysics ; Tomography, Emission-Computed, Single-Photon ; Tomography, X-Ray Computed</subject><ispartof>Computerized medical imaging and graphics, 2001-03, Vol.25 (2), p.187-193</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-c4a86e00e4937c0341173e7aab95b32c88b00c89b177e4b766d673c658ce0d0c3</citedby><cites>FETCH-LOGICAL-c420t-c4a86e00e4937c0341173e7aab95b32c88b00c89b177e4b766d673c658ce0d0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0895-6111(00)00047-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=890464$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11137795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thierens, H.M</creatorcontrib><creatorcontrib>Monsieurs, M.A</creatorcontrib><creatorcontrib>Brans, B</creatorcontrib><creatorcontrib>Van Driessche, T</creatorcontrib><creatorcontrib>Christiaens, I</creatorcontrib><creatorcontrib>Dierckx, R.A</creatorcontrib><title>Dosimetry from organ to cellular dimensions</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a non-uniform activity distribution. For the individual treatment planning of patients treated with common radionuclides emitting high energy betas, the individual activity distribution has to be obtained from CT-SPECT images and the doses to the target organs and critical tissues have to be calculated by point-kernel methods. Due to the stochastic nature, alpha-radioimmunotherapy (alpha-RIT) requires microdosimetric calculations with Monte Carlo on a realistic model of the source and target tissue at the micrometer level. For a prediction of the biological effects of intracellular labelling with Auger electron emitters an accurate subcellular modelling including the DNA structure at the nanometre level with knowledge of the target for the considered biological effect is necessary.</description><subject>3-Iodobenzylguanidine - therapeutic use</subject><subject>Alpha Particles - therapeutic use</subject><subject>Alpha-radioimmunotherapy</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Applied radiobiology (equipment, dosimetry...)</subject><subject>Auger electrons</subject><subject>Beta Particles - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Biological effects of radiation</subject><subject>Bone Marrow - radiation effects</subject><subject>Cells - radiation effects</subject><subject>Computational methods</subject><subject>Computer Simulation</subject><subject>DNA</subject><subject>Dosimetry</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Internal dosimetry</subject><subject>Linear Energy Transfer</subject><subject>Male</subject><subject>Medical internal radiation dose</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Neuroblastoma - diagnostic imaging</subject><subject>Neuroblastoma - radiotherapy</subject><subject>Point–kernel methods</subject><subject>Predictive Value of Tests</subject><subject>Radioimmunotherapy - standards</subject><subject>Radiometry - methods</subject><subject>Radiometry - standards</subject><subject>Radiopharmaceuticals - pharmacokinetics</subject><subject>Radiopharmaceuticals - therapeutic use</subject><subject>Radiotherapy - standards</subject><subject>Tissue Distribution</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><subject>Tomography, X-Ray Computed</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1LwzAUhoMobk5_glIQRJHqyZom6ZXI_ISBF-p1SNMzibTNTFph_97sg3m5mxM4ed7k5SHklMINBcpv30EWecoppZcAVwDAREr3yJBKUaQgBN0nwy0yIEchfEdoDIIekkFcZUIU-ZBcP7hgG-z8Ipl51yTOf-k26VxisK77WvukitdtsK4Nx-RgpuuAJ5tzRD6fHj8mL-n07fl1cj9NDRtDF6eWHAGQFZkwkDFKRYZC67LIy2xspCwBjCxKKgSyUnBecZEZnkuDUIHJRuRi_e7cu58eQ6caG5Z9dIuuD0pALmNW7gTHlLECOI9gvgaNdyF4nKm5t432C0VBLXWqlU61dKUA1EqnojF3tvmgLxus_lMbfxE43wA6GF3PvG6NDVtOFsA4i9TdmsJo7deiV8FYbA1W1qPpVOXsjiJ_54qO8g</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Thierens, H.M</creator><creator>Monsieurs, M.A</creator><creator>Brans, B</creator><creator>Van Driessche, T</creator><creator>Christiaens, I</creator><creator>Dierckx, R.A</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010301</creationdate><title>Dosimetry from organ to cellular dimensions</title><author>Thierens, H.M ; Monsieurs, M.A ; Brans, B ; Van Driessche, T ; Christiaens, I ; Dierckx, R.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-c4a86e00e4937c0341173e7aab95b32c88b00c89b177e4b766d673c658ce0d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>3-Iodobenzylguanidine - therapeutic use</topic><topic>Alpha Particles - therapeutic use</topic><topic>Alpha-radioimmunotherapy</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Applied radiobiology (equipment, dosimetry...)</topic><topic>Auger electrons</topic><topic>Beta Particles - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Biological effects of radiation</topic><topic>Bone Marrow - radiation effects</topic><topic>Cells - radiation effects</topic><topic>Computational methods</topic><topic>Computer Simulation</topic><topic>DNA</topic><topic>Dosimetry</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Internal dosimetry</topic><topic>Linear Energy Transfer</topic><topic>Male</topic><topic>Medical internal radiation dose</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Neuroblastoma - diagnostic imaging</topic><topic>Neuroblastoma - radiotherapy</topic><topic>Point–kernel methods</topic><topic>Predictive Value of Tests</topic><topic>Radioimmunotherapy - standards</topic><topic>Radiometry - methods</topic><topic>Radiometry - standards</topic><topic>Radiopharmaceuticals - pharmacokinetics</topic><topic>Radiopharmaceuticals - therapeutic use</topic><topic>Radiotherapy - standards</topic><topic>Tissue Distribution</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thierens, H.M</creatorcontrib><creatorcontrib>Monsieurs, M.A</creatorcontrib><creatorcontrib>Brans, B</creatorcontrib><creatorcontrib>Van Driessche, T</creatorcontrib><creatorcontrib>Christiaens, I</creatorcontrib><creatorcontrib>Dierckx, R.A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thierens, H.M</au><au>Monsieurs, M.A</au><au>Brans, B</au><au>Van Driessche, T</au><au>Christiaens, I</au><au>Dierckx, R.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dosimetry from organ to cellular dimensions</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2001-03-01</date><risdate>2001</risdate><volume>25</volume><issue>2</issue><spage>187</spage><epage>193</epage><pages>187-193</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>While the conventional Medical Internal Radiation Dose (MIRD) approach is useful for estimating approximate organ absorbed doses in diagnostic applications of isotopes, this strategy is suited neither to the exacting requirements of targeted radionuclide therapy nor to radiopharmaceuticals with a non-uniform activity distribution. For the individual treatment planning of patients treated with common radionuclides emitting high energy betas, the individual activity distribution has to be obtained from CT-SPECT images and the doses to the target organs and critical tissues have to be calculated by point-kernel methods. Due to the stochastic nature, alpha-radioimmunotherapy (alpha-RIT) requires microdosimetric calculations with Monte Carlo on a realistic model of the source and target tissue at the micrometer level. For a prediction of the biological effects of intracellular labelling with Auger electron emitters an accurate subcellular modelling including the DNA structure at the nanometre level with knowledge of the target for the considered biological effect is necessary.</abstract><cop>New York, NY</cop><pub>Elsevier Ltd</pub><pmid>11137795</pmid><doi>10.1016/S0895-6111(00)00047-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-6111 |
ispartof | Computerized medical imaging and graphics, 2001-03, Vol.25 (2), p.187-193 |
issn | 0895-6111 1879-0771 |
language | eng |
recordid | cdi_proquest_miscellaneous_70581778 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | 3-Iodobenzylguanidine - therapeutic use Alpha Particles - therapeutic use Alpha-radioimmunotherapy Antineoplastic Agents - pharmacokinetics Antineoplastic Agents - therapeutic use Applied radiobiology (equipment, dosimetry...) Auger electrons Beta Particles - therapeutic use Biological and medical sciences Biological effects of radiation Bone Marrow - radiation effects Cells - radiation effects Computational methods Computer Simulation DNA Dosimetry Female Fundamental and applied biological sciences. Psychology Humans Image analysis Internal dosimetry Linear Energy Transfer Male Medical internal radiation dose Monte Carlo Method Monte Carlo methods Neuroblastoma - diagnostic imaging Neuroblastoma - radiotherapy Point–kernel methods Predictive Value of Tests Radioimmunotherapy - standards Radiometry - methods Radiometry - standards Radiopharmaceuticals - pharmacokinetics Radiopharmaceuticals - therapeutic use Radiotherapy - standards Tissue Distribution Tissues, organs and organisms biophysics Tomography, Emission-Computed, Single-Photon Tomography, X-Ray Computed |
title | Dosimetry from organ to cellular dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dosimetry%20from%20organ%20to%20cellular%20dimensions&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Thierens,%20H.M&rft.date=2001-03-01&rft.volume=25&rft.issue=2&rft.spage=187&rft.epage=193&rft.pages=187-193&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/S0895-6111(00)00047-1&rft_dat=%3Cproquest_cross%3E70581778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21449066&rft_id=info:pmid/11137795&rft_els_id=S0895611100000471&rfr_iscdi=true |