In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy

In this study we coated a new biocompatible, nanostructured titanium alloy, Ti13Nb13Zr, with a thin layer of hydroxyapatite nanocrystals and we investigated the response of human bone‐marrow‐derived mesenchymal cells. The coating was realized using a slightly supersaturated CaP solution, which provo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2007-07, Vol.82A (1), p.213-221
Hauptverfasser: Bigi, A., Nicoli-Aldini, N., Bracci, B., Zavan, B., Boanini, E., Sbaiz, F., Panzavolta, S., Zorzato, G., Giardino, R., Facchini, A., Abatangelo, G., Cortivo, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 1
container_start_page 213
container_title Journal of biomedical materials research. Part A
container_volume 82A
creator Bigi, A.
Nicoli-Aldini, N.
Bracci, B.
Zavan, B.
Boanini, E.
Sbaiz, F.
Panzavolta, S.
Zorzato, G.
Giardino, R.
Facchini, A.
Abatangelo, G.
Cortivo, R.
description In this study we coated a new biocompatible, nanostructured titanium alloy, Ti13Nb13Zr, with a thin layer of hydroxyapatite nanocrystals and we investigated the response of human bone‐marrow‐derived mesenchymal cells. The coating was realized using a slightly supersaturated CaP solution, which provokes a fast deposition of nanocrystalline hydroxyapatite. A thin layer of deposition is appreciable on the etched Ti13Nb13Zr substrates after just 1.5 h soaking in the CaP solution, and it reaches a thickness of 1–2 μm after 3 h soaking. The coating seems thinner than that deposited on Ti6Al4V, which was examined for comparison, likely because of the different roughness profiles of the two etched alloys, and it is constituted of elongated HA nanocrystals, with a mean length of about 100 nm. Mesenchymal stem cells were seeded onto coated and uncoated Ti alloys and cultured for up to 35 days. Cell morphology, proliferation and differentiation were evaluated. The cells display good adhesion and proliferation on the uncoated substrates, whereas the presence of hydroxyapatite coating slightly reduces cell proliferation and induces differentiation of MSCs towards a phenotypic osteoblastic lineage, in agreement with the increase of the expression of osteopontin, osteonectin and collagen type I, evaluated by means of rt‐PCR. Type I collagen expression is higher in Ti13Nb13Zr MSC culture compared to Ti6Al4V, standing for a more efficient extracellular matrix deposition. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007
doi_str_mv 10.1002/jbm.a.31132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70565256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70565256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5012-f03a479b9d88b9d059e4eaed65f70f9be4fea0b8eb3597529da5ca94edcaf2f13</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgegHnLgjn7igLP6I7fWRVrQUSjlQhMTFmjhjNSWJF9uhzb8nyy5wg4vHh2dejV5CnnG24oyJV7fNsIKV5FyKB-SQKyWq2mr1cPuvbSWF1QfkKOfbBWumxGNywI3QmnFzSOBipD-6kiL1U1-mhDQGOmDG0d_MA_TUY99nGscS6Qhj9GnOBfq-G5HezG2K9zNsoHQFKx-hYEuvOy6vGi6_Jrq4OD8hjwL0GZ_u5zH5fPbm-vRtdfnx_OL09WXlFeOiCkxCbWxj2_V6eZiyWCNgq1UwLNgG64DAmjU2UlmjhG1BebA1th6CCFwekxe73E2K3yfMxQ1d3l4PI8YpO8OUVkLp_0Jh18YIqRb4cgd9ijknDG6TugHS7Dhz2-rdUr0D96v6RT_fx07NgO1fu-96AXwH7roe539luXcnH36HVrudLhe8_7MD6ZvTRhrlvlyduxOp5Sf1_sxJ-RPuhp9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29877235</pqid></control><display><type>article</type><title>In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Bigi, A. ; Nicoli-Aldini, N. ; Bracci, B. ; Zavan, B. ; Boanini, E. ; Sbaiz, F. ; Panzavolta, S. ; Zorzato, G. ; Giardino, R. ; Facchini, A. ; Abatangelo, G. ; Cortivo, R.</creator><creatorcontrib>Bigi, A. ; Nicoli-Aldini, N. ; Bracci, B. ; Zavan, B. ; Boanini, E. ; Sbaiz, F. ; Panzavolta, S. ; Zorzato, G. ; Giardino, R. ; Facchini, A. ; Abatangelo, G. ; Cortivo, R.</creatorcontrib><description>In this study we coated a new biocompatible, nanostructured titanium alloy, Ti13Nb13Zr, with a thin layer of hydroxyapatite nanocrystals and we investigated the response of human bone‐marrow‐derived mesenchymal cells. The coating was realized using a slightly supersaturated CaP solution, which provokes a fast deposition of nanocrystalline hydroxyapatite. A thin layer of deposition is appreciable on the etched Ti13Nb13Zr substrates after just 1.5 h soaking in the CaP solution, and it reaches a thickness of 1–2 μm after 3 h soaking. The coating seems thinner than that deposited on Ti6Al4V, which was examined for comparison, likely because of the different roughness profiles of the two etched alloys, and it is constituted of elongated HA nanocrystals, with a mean length of about 100 nm. Mesenchymal stem cells were seeded onto coated and uncoated Ti alloys and cultured for up to 35 days. Cell morphology, proliferation and differentiation were evaluated. The cells display good adhesion and proliferation on the uncoated substrates, whereas the presence of hydroxyapatite coating slightly reduces cell proliferation and induces differentiation of MSCs towards a phenotypic osteoblastic lineage, in agreement with the increase of the expression of osteopontin, osteonectin and collagen type I, evaluated by means of rt‐PCR. Type I collagen expression is higher in Ti13Nb13Zr MSC culture compared to Ti6Al4V, standing for a more efficient extracellular matrix deposition. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.31132</identifier><identifier>PMID: 17266017</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alloys - chemistry ; Base Sequence ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cell Adhesion ; Cell Culture Techniques - methods ; Cell Differentiation ; Cell Proliferation ; Coated Materials, Biocompatible - chemistry ; coating ; Collagen Type I - genetics ; DNA Primers - genetics ; Durapatite - chemistry ; Gene Expression ; Humans ; Materials Testing ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Microscopy, Electron, Scanning ; nanocrystalline hydroxyapatite ; Nanoparticles - chemistry ; ostegenic markers ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteonectin - genetics ; Osteopontin - genetics ; proliferation ; Ti alloys ; Titanium - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2007-07, Vol.82A (1), p.213-221</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>Copyright 2007 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5012-f03a479b9d88b9d059e4eaed65f70f9be4fea0b8eb3597529da5ca94edcaf2f13</citedby><cites>FETCH-LOGICAL-c5012-f03a479b9d88b9d059e4eaed65f70f9be4fea0b8eb3597529da5ca94edcaf2f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.31132$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.31132$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17266017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bigi, A.</creatorcontrib><creatorcontrib>Nicoli-Aldini, N.</creatorcontrib><creatorcontrib>Bracci, B.</creatorcontrib><creatorcontrib>Zavan, B.</creatorcontrib><creatorcontrib>Boanini, E.</creatorcontrib><creatorcontrib>Sbaiz, F.</creatorcontrib><creatorcontrib>Panzavolta, S.</creatorcontrib><creatorcontrib>Zorzato, G.</creatorcontrib><creatorcontrib>Giardino, R.</creatorcontrib><creatorcontrib>Facchini, A.</creatorcontrib><creatorcontrib>Abatangelo, G.</creatorcontrib><creatorcontrib>Cortivo, R.</creatorcontrib><title>In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>In this study we coated a new biocompatible, nanostructured titanium alloy, Ti13Nb13Zr, with a thin layer of hydroxyapatite nanocrystals and we investigated the response of human bone‐marrow‐derived mesenchymal cells. The coating was realized using a slightly supersaturated CaP solution, which provokes a fast deposition of nanocrystalline hydroxyapatite. A thin layer of deposition is appreciable on the etched Ti13Nb13Zr substrates after just 1.5 h soaking in the CaP solution, and it reaches a thickness of 1–2 μm after 3 h soaking. The coating seems thinner than that deposited on Ti6Al4V, which was examined for comparison, likely because of the different roughness profiles of the two etched alloys, and it is constituted of elongated HA nanocrystals, with a mean length of about 100 nm. Mesenchymal stem cells were seeded onto coated and uncoated Ti alloys and cultured for up to 35 days. Cell morphology, proliferation and differentiation were evaluated. The cells display good adhesion and proliferation on the uncoated substrates, whereas the presence of hydroxyapatite coating slightly reduces cell proliferation and induces differentiation of MSCs towards a phenotypic osteoblastic lineage, in agreement with the increase of the expression of osteopontin, osteonectin and collagen type I, evaluated by means of rt‐PCR. Type I collagen expression is higher in Ti13Nb13Zr MSC culture compared to Ti6Al4V, standing for a more efficient extracellular matrix deposition. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</description><subject>Alloys - chemistry</subject><subject>Base Sequence</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cell Adhesion</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>coating</subject><subject>Collagen Type I - genetics</subject><subject>DNA Primers - genetics</subject><subject>Durapatite - chemistry</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Microscopy, Electron, Scanning</subject><subject>nanocrystalline hydroxyapatite</subject><subject>Nanoparticles - chemistry</subject><subject>ostegenic markers</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteonectin - genetics</subject><subject>Osteopontin - genetics</subject><subject>proliferation</subject><subject>Ti alloys</subject><subject>Titanium - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1v1DAQBmALgegHnLgjn7igLP6I7fWRVrQUSjlQhMTFmjhjNSWJF9uhzb8nyy5wg4vHh2dejV5CnnG24oyJV7fNsIKV5FyKB-SQKyWq2mr1cPuvbSWF1QfkKOfbBWumxGNywI3QmnFzSOBipD-6kiL1U1-mhDQGOmDG0d_MA_TUY99nGscS6Qhj9GnOBfq-G5HezG2K9zNsoHQFKx-hYEuvOy6vGi6_Jrq4OD8hjwL0GZ_u5zH5fPbm-vRtdfnx_OL09WXlFeOiCkxCbWxj2_V6eZiyWCNgq1UwLNgG64DAmjU2UlmjhG1BebA1th6CCFwekxe73E2K3yfMxQ1d3l4PI8YpO8OUVkLp_0Jh18YIqRb4cgd9ijknDG6TugHS7Dhz2-rdUr0D96v6RT_fx07NgO1fu-96AXwH7roe539luXcnH36HVrudLhe8_7MD6ZvTRhrlvlyduxOp5Sf1_sxJ-RPuhp9w</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Bigi, A.</creator><creator>Nicoli-Aldini, N.</creator><creator>Bracci, B.</creator><creator>Zavan, B.</creator><creator>Boanini, E.</creator><creator>Sbaiz, F.</creator><creator>Panzavolta, S.</creator><creator>Zorzato, G.</creator><creator>Giardino, R.</creator><creator>Facchini, A.</creator><creator>Abatangelo, G.</creator><creator>Cortivo, R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200707</creationdate><title>In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy</title><author>Bigi, A. ; Nicoli-Aldini, N. ; Bracci, B. ; Zavan, B. ; Boanini, E. ; Sbaiz, F. ; Panzavolta, S. ; Zorzato, G. ; Giardino, R. ; Facchini, A. ; Abatangelo, G. ; Cortivo, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5012-f03a479b9d88b9d059e4eaed65f70f9be4fea0b8eb3597529da5ca94edcaf2f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloys - chemistry</topic><topic>Base Sequence</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cell Adhesion</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>coating</topic><topic>Collagen Type I - genetics</topic><topic>DNA Primers - genetics</topic><topic>Durapatite - chemistry</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Microscopy, Electron, Scanning</topic><topic>nanocrystalline hydroxyapatite</topic><topic>Nanoparticles - chemistry</topic><topic>ostegenic markers</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteonectin - genetics</topic><topic>Osteopontin - genetics</topic><topic>proliferation</topic><topic>Ti alloys</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bigi, A.</creatorcontrib><creatorcontrib>Nicoli-Aldini, N.</creatorcontrib><creatorcontrib>Bracci, B.</creatorcontrib><creatorcontrib>Zavan, B.</creatorcontrib><creatorcontrib>Boanini, E.</creatorcontrib><creatorcontrib>Sbaiz, F.</creatorcontrib><creatorcontrib>Panzavolta, S.</creatorcontrib><creatorcontrib>Zorzato, G.</creatorcontrib><creatorcontrib>Giardino, R.</creatorcontrib><creatorcontrib>Facchini, A.</creatorcontrib><creatorcontrib>Abatangelo, G.</creatorcontrib><creatorcontrib>Cortivo, R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bigi, A.</au><au>Nicoli-Aldini, N.</au><au>Bracci, B.</au><au>Zavan, B.</au><au>Boanini, E.</au><au>Sbaiz, F.</au><au>Panzavolta, S.</au><au>Zorzato, G.</au><au>Giardino, R.</au><au>Facchini, A.</au><au>Abatangelo, G.</au><au>Cortivo, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2007-07</date><risdate>2007</risdate><volume>82A</volume><issue>1</issue><spage>213</spage><epage>221</epage><pages>213-221</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>In this study we coated a new biocompatible, nanostructured titanium alloy, Ti13Nb13Zr, with a thin layer of hydroxyapatite nanocrystals and we investigated the response of human bone‐marrow‐derived mesenchymal cells. The coating was realized using a slightly supersaturated CaP solution, which provokes a fast deposition of nanocrystalline hydroxyapatite. A thin layer of deposition is appreciable on the etched Ti13Nb13Zr substrates after just 1.5 h soaking in the CaP solution, and it reaches a thickness of 1–2 μm after 3 h soaking. The coating seems thinner than that deposited on Ti6Al4V, which was examined for comparison, likely because of the different roughness profiles of the two etched alloys, and it is constituted of elongated HA nanocrystals, with a mean length of about 100 nm. Mesenchymal stem cells were seeded onto coated and uncoated Ti alloys and cultured for up to 35 days. Cell morphology, proliferation and differentiation were evaluated. The cells display good adhesion and proliferation on the uncoated substrates, whereas the presence of hydroxyapatite coating slightly reduces cell proliferation and induces differentiation of MSCs towards a phenotypic osteoblastic lineage, in agreement with the increase of the expression of osteopontin, osteonectin and collagen type I, evaluated by means of rt‐PCR. Type I collagen expression is higher in Ti13Nb13Zr MSC culture compared to Ti6Al4V, standing for a more efficient extracellular matrix deposition. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17266017</pmid><doi>10.1002/jbm.a.31132</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2007-07, Vol.82A (1), p.213-221
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_70565256
source MEDLINE; Wiley Journals
subjects Alloys - chemistry
Base Sequence
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Cell Adhesion
Cell Culture Techniques - methods
Cell Differentiation
Cell Proliferation
Coated Materials, Biocompatible - chemistry
coating
Collagen Type I - genetics
DNA Primers - genetics
Durapatite - chemistry
Gene Expression
Humans
Materials Testing
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Microscopy, Electron, Scanning
nanocrystalline hydroxyapatite
Nanoparticles - chemistry
ostegenic markers
Osteoblasts - cytology
Osteoblasts - metabolism
Osteonectin - genetics
Osteopontin - genetics
proliferation
Ti alloys
Titanium - chemistry
title In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20culture%20of%20mesenchymal%20cells%20onto%20nanocrystalline%20hydroxyapatite-coated%20Ti13Nb13Zr%20alloy&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Bigi,%20A.&rft.date=2007-07&rft.volume=82A&rft.issue=1&rft.spage=213&rft.epage=221&rft.pages=213-221&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31132&rft_dat=%3Cproquest_cross%3E70565256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29877235&rft_id=info:pmid/17266017&rfr_iscdi=true